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Abstract

The Existing stock price models are mainly based on time series methodologies which are hard to 
estimate and involve lots of assumptions. This study, in contrast, assumes that the stock prices follow 
stochastic process that possesses Markov dependency with finite state transition probabilities and 
proposes an alternate methodology for stock price modeling. For this purpose, daily stock index data 
from Pakistan Stock Exchange (PSE) is collected from 2010-2015 and categorized in to 10 state 
spaces. Based on the results of state transition model, the study highlights the most probable state of 
return and also its transition into another state. Further, the study used Monte Carlo method of stock 
index simulations both Markov chain and original stock index. The analysis shows that it is possible 
to model and forecast stock index by capturing the underlying Markov process. The results of the 
study are helpful for investors in selecting the right time of making investment and for academician to 
think about more sophisticated methods of state identification. 
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Simulation.

JEL Classification: G100

Introduction

 Portfolio optimization problem remains one of the most challenging topics for financial 
researchers of this century. The Markowitz classical approach of mean-variance analysis was mainly 
based on maximization of returns while keeping the variance at a constant level. Fama (1965) 
empirically confirmed the accuracy of Bachelier (1914) random walk behavior of stock prices where 
stock price reacts according to the arrival of new information. Analysis of financial time series and 
investigating stock price behaviors has also been a subject of study in finance.
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 Several researchers (Fama 1965; Nelson 1991; Mandelbrot, 1997) argued that stock return 
distribution is leptokurtic and the classical as well as most of the conventional analysis techniques 
ignore the state transition property of asset returns. Therefore, the markets which are characterized by 
regime switching property of asset return, more appropriate technique is to analyze their state 
transition property instead of conventional methods of time series analysis (Zhou & Yin 2003; Yin & 
Zhou, 2004; Guidolin & Timmermann, 2007; Bae et al., 2014). The present study suggest Markov 
switching model to be more appropriate method of analysis is such scenario.

 Markov chain is an important concept in modeling conceptual processes which has evolved 
over a period of time. It assumes that future values depend only on current observation while the 
knowledge of history is irrelevant. Markov switching models are based on the idea of transition of one 
state in to another state which is governed by Markov process. Wikipedia defines Discrete Time 
Markov Chain (DTMC) in the following words;
  

 The idea of construction and analysis of Markov chain is related with the concept of market 
efficiency and the Markov process seems to be consistent with weak form of market efficiency. 
According to the market efficiency theories, the stock prices react according to the information and in 
case of weak form of market efficiency, the past price information is fully incorporated in the current 
price. This implies that it is near to impossible that investor gets abnormal profit over a long period of 
time using the trading rules based on historical price information. The Markov chain assumes that 
prices keep changing within specified but unobserved price range (the present study calls it price 
regime or state) which forms psychological price barriers and in order to break the barriers the market 
needs information. The present study assumes that potential information pushes the prices from one 
regime to another regime. Technically, the prices follow a pattern and there could be several ways of 
analyzing the price pattern and use it for future predictions. The previous studies have applied time 
series methodologies including Exponentially Weighted Moving Average (EWMA), Auto Regressive 
Integrated Moving Average (ARIMA), Generalized Auto Regressive Conditional Hetroscedastic 
(GARCH ) and technical chart analysis techniques but only a handful of researchers have used regime 
switching methodology for analysis. The first step is to identify the regimes, second is to analyze and 
record the frequency of transition of one state into another, third is to calculate the transitional 
probabilities and finally use the probabilities for further price forecasting. The detail of this process is 
discussed in the methodology section.
 

 As stated earlier, few researchers have used the regime switching Markov chain 
methodology in analyzing the stock prices, the distinction of the idea presented here is the 
introduction of several finite state spaces instead of conventional method of 3 major state spaces. PSE 
is among the highly volatile market of the region which is more volatile during low negative return 
regimes and less volatile during positive return periods. This is evident in figure 1 which compares the 
3 days moving average returns of PSE with 3 days volatility. The figure depicts that during the high 
negative return periods the volatility graph is at its peak while returns are more stable during the 
period of positive returns. As conventional approaches like EWMA, ARIMA and GARCH are not 
much effective as the parameters of these models are constants and introducing Ito’s process 4  in 
theses model are extremely complex. Therefore, the present study suggests the use of regime 
switching models to be more appropriate in case of PSE. 
 

Literature Review

 The existing literature provides a good deal of debate on the idea of regime shifts and 
Markov switching models. Since the time of Goldfeld and Quandt (1973) who appears to be the 
pioneers in addressing the existence of regimes and introduced the regime switching regression for 
estimation. Goldfeld and Quandt (1973 b) latter addressed the issues in structural shifts by switching 
regression. Hamilton (1989) improved the model of Goldfeld and Quandt (1973) by allowing regime 
shifts in dependent variable and introduced Markov Switching Autoregressive (MSAR) model. 

4 Ito process is based on Itô calculus, named after Kiyoshi Itô, which extends the methods of calculus to stochastic processes 
such as Brownian motion (see Wiener process). It has important applications in mathematical finance and stochastic differential 
equations. The details of this complex idea is beyond the scope of this paper.

 The application of regime switching models in case of stock market returns was first 
introduced by Turner et al. (1989) who capture the regime shift behavior in mean and variance of 
stock market returns using MSAR. Latter, several researchers (for instance, Chu et al., 1996; Schaller 
& Norden, 1997 & Nishiyama, 1998 etc) studied and highlighted the regime switching property of 
stock returns. Both Cheu et al. (1994) and Schaller and Norden (1997) found regime shifts in stock 
returns. They investigated the relationship between stock returns and their volatility using MSAR and 
found a nonlinear relationship in returns and volatility. Nishiyima (1998) investigated the existence of 
different regimes in aggregate stock returns and their mean variance properties in five industrialized 
countries. He focused more on volatility shifts rather than mean shifts whiles identifying the switching 
behavior and found consistent volatility based regime shifts in all countries. Similarly Maheu and 
McCudy (2000) used regime switching model in US stock market. Wang and Theobald (2007) applied 
MS regression in East Asian countries and found that stock returns in these countries are characterized 
by two and three regimes. Ismail and Zaidi (2008) examined the regime switching model in more 
detail in Malaysia. They used non-linear MSAR framework to capture regime shift behavior in Bursa 
Malaysia. Laha (2006) investigated regime switching behavior in India by using hidden Markov 
model under Bayesian framework. Kumar (2006) analyzed the weekly data using Markov switching 
vector error correction model (MS-VECM) and found the existence of two different regimes 
identified on the basis of stock prices and trading volume. Researchers have also attempted to model 
a nonlinear structure in time series data. For instance, Turner et al. (1989), Schaller and Norden 
(1997), Hamilto and Lin (1996) and Gordon and St-Amour (2000) modeled the nonlinear dynamics 
of stock market volatility. The evidence from developing economies regarding the application of 
Markov chains is still very limited. Although MC is an emerging technique of modeling stock returns 
however, to the best of authors’ knowledge previous researchers have ignored this method of 
modeling stock returns especially in emerging markets. 

Methodology

 By Markov process the present study means a stochastic process {X (t); t ε T} having 
Markov property for a finite set of points (t_0,t_1,…..,t_9). Let Χ be the finite state space Markov 
chain with states(1,2,….10). Given a particular time event t the chain Χ is in state i and pij 5 denotes 
the conditional probability that Χ will be in state j at time t+1 given it was observed in state i at time 
t. In a similar way p_ij^((n)) represents the probability that Χ would transit from state i to state j after 
n transitions, given p_ij^((n))>0. Further, if A is a transition probability matrix of Markov Chain with 
finite state space then the elements of p_ij^((n)) have ergodic properties. The ergodic properties 6 of 
Markov chain include irreducibility, aperiodicity and time homogeneity. In short Markov chain is a 

5 It implicitly assumed here that Markov chain in time homogeneous as the quantity p_ijis independent of time t.
6 If (x0, x1…..xn) is an irreducible, time homogeneous, discrete space Markov chain, with stationary distribution π, then 1/n 
∑_(i=1)^n〖f(x_i )  ⇒ E[f(x)] 〗 for any bounded function f in ∈R.

process where for every n and t1<t2<t3…..tn, we have:

P(x(tn )≤xn |x(t)  t≤t_n-1)=P(x(tn )≤xn |x(t_n-1))

 The Markov property implies that the probability distribution of future prices does not follow 
any particular path which is followed by the price in the past therefore; investor cannot predict the 
future prices just by observing the past prices. To construct the Markov chain the present study taken 
the daily KSE100 index of PSE from 2010 to 2015. The log returns are then classified into 10 states 
based on the range of returns with the difference of 10%. The daily movement of returns for five years 
is closely observed to identify by the pattern of movement of index from one state of return to another. 
Before calculating the transition probability matrix, several tests are conducted to ensure the presence 
of Markov property. Initially, to test the dependence of a state on another, chi square test of 
independence is conducted. To check the stationarity of states, unit root test is also conducted and 
finally to verify the Markov property, AR(1) and AR(2) models are estimated 7 . Based on the 
transition of one state in to another a frequencies are calculated which are latter used to calculate 
transition probabilities. The transition state frequency is converted into transition probabilities as 
below:

 If A is the transition probability matrix of an irreducible, aperiodic finite state Markov chain 
then

 
 The Markov chain with above property is said to be ergodic and possesses a limiting 
distribution π (Baht,  1972). Based on the above mentioned methodology the statistical analysis is 
conducted and results are presented in the next section. In second phase, Monte Carlo (MC) 
simulation method is used to simulate random future data. MC model is given as below:

 Where It is the index at time t, It-1 is the previous value of index and r is the rate of return. 
Where r consists of drift factors defined by (μ-σ^2/2) at time t and a random variance σW_t. Hence,

7 In order to have a Markov property, only AR(1) should be significant and  not AR(2)

The above MC equation is used to generate ten series each from Markov chain and actual stock index 
and the results therefrom are discussed in the next section.
Statistical Analysis

 Initially ten states are designed using a constant range of 0.1% starting from 3% to -4% based 
on the daily index returns. Table 1 presents the descriptive analysis of ten states. The last three 
columns show the mean return of each state and volatility measured by standard deviation and 
coefficient of variation. The descriptive analysis of states shows that 4th and 6th states are highly 
volatile however it is not clear that which initial state is most probable to be transited in to state 4 or 
6. Before analyzing the chain sequence in the mentioned below states it is important to estimates that 
whether or not the chain possesses the Markov property.
 
Table 1.
Descriptive Analysis of States
 

 At first step the chi-square (χ^2) test of independence of states given the current state is 
conducted, the estimated value of the test is significant at the level less than 1%                                                                                             
which shows that the identified states are dependent on its first lag, which is a necessary condition for 
a Markov chain. However, in order to fulfill the Markov chain requirement the identified states must 
be correlated with its first lag which means that in order to predict the next state of returns the only 
information required is the knowledge of the current state of return.

Table 2:
Test of Stationarity and Auto Regression

 Dependent variable is current state and LAG1 represents the state at time t-1 and LGA2 
represents the state at time t-2. To check the stationarity of states Unit root test is conducted which 
remain significant at level. Unit root t-stat is -31.97871 and p-value is 0.000. Parentheses contain 
(standard Error) and [t-statistic]. **** shows the level of significance at the level 1% or less. 

 This assumption is tested using two methods. Firstly the test of autocorrelation using first, 
second and third lag is applied and secondly the test of auto regression using the 1st, 2nd and 3rd order 
is applied. The former shows a significant autocorrelation between the current and first lagged value 
(i.e.AC1= 0.12; sig 0.000) and very weak correlation with the second and third lagged value (i.e. 
AC2=0.01; sig 0.000 and AC3=0.01; sig 0.000) while the latter confirmed that only AR (1) is 
significant. The results of auto regression are presented in table 2. The results of table 2 confirms the 
presence of Markov property in the states identified in this study as only the value of first lag is 
significant. The next step is to construct a state transition matrix. Following is the transition 
probability matrix ‘A’ which is measured on the basis of frequency of transition of one state into 
another. Each component of A is p_ij, where p is the probability of transition of state i into state j, with 
i,j=1,2,3…..10. 

 For example, M is the initial state space which shows the return on index is in state 1 with  p 
= 1.00 at a particular point in time, and then it will shift from state 1 to state 3 with P=1.00 after first 
transition (given as M*A, where A is transition matrix given above). After 6th transition the 
probability of states are presented in (5) below. Following is the output of transition vectors using 
MatLab.

 Similarly, if the initial state is S10 with P=1.00 then after 5th transition, the probability 
distribution of state are given in (6) below:

 The probability distribution of states given above is equal to the stationary transition vector 
T. If probability of return stays in 1st state is 1.00 at time t then there is 38.41% chance that return 
would be in state 4 and 34.31% chance that return would be in state 6 and so on so forth. Finally, based 
on the transitional probability matrix expected return of state j is calculated given state i and using 
these return forecasts future value of KSE index are calculated. Figure 3 shows the comparison of 
actual index and forecasted index. It is evident from figure 3 that based on Markov chain model some 
sort of intuition can be taken regarding the stock indices. 

Figure 3: PSE Index (Actual vs Predicted)

 Further based on Monte Carlo approach random simulations are run for each of the series i.e. 
predicted Markov chain and actual KSE index, the results are depicted in the figure 4 and 5 
respectively. The smoothness of Markov chain simulation is due to the fact that additional variance 
has been absorbed in single state and index prediction can be made with lesser volatility.

Conclusion and Direction for Future Research

 The present study attempts to investigate the presence of Markov property in PSE using the 
data of KSE 100 index. Based on the daily index returns ten return states are identified. To identify the 
Markov property test of dependence of current state on the first lagged state is estimated using AR (1) 
and AR (2) models. The stock transition from one state to another state is calculated and based on the 
relative frequency of transitions a state transition matrix is identified. This transition matrix is further 
employed to calculate the next expected return given a particular state at present. The returns are 
converted in to predicted index which showed that a Markov chain is suitable for modeling stock 
indices. The methodology used in this paper is preliminary in nature because the authors did not find 
any evidence of the use of Markov chain in developing economies especially in Pakistan. Therefore, 
the authors find it justified to start modeling the index using discrete time finite state MC. Due to its 
power of capturing behavioral factors in price modeling, Markov chains are emerging as an alternate 
way of analyzing the time series data. In future, researchers can analyze and model a portfolio of 
individual stocks instead of stock index. There is still need to improve the method of identification of 
states in Markov chains. Instead of discrete time finite state models more complex continuous time 
models can be studies. Last but not least, future researchers can use Markov Chain Monte Carlo 
(MCMC) method under Bayesian framework, in stock price modeling and forecasting.

 Based on the transition probability matrix following is the diagrammatic depiction of regime 
switching Markov chain (Figure 2). The arrows at the top show the probability of transition from high 
return state towards lower return state while arrows at lower side shows the probability of transition 
from low return state towards the high return state. The self-directed arrows at the lower side show the 
probability that the current state shall persist.

Figure 2:  Finite State Space Markov Chain

The transition matrix A fulfills the property of irreducibility and aperiodicity and also it is time 
homogenous.

Where,  = A^n  with n>0 , is a steady state probability vector. 
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 Portfolio optimization problem remains one of the most challenging topics for financial 
researchers of this century. The Markowitz classical approach of mean-variance analysis was mainly 
based on maximization of returns while keeping the variance at a constant level. Fama (1965) 
empirically confirmed the accuracy of Bachelier (1914) random walk behavior of stock prices where 
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 Several researchers (Fama 1965; Nelson 1991; Mandelbrot, 1997) argued that stock return 
distribution is leptokurtic and the classical as well as most of the conventional analysis techniques 
ignore the state transition property of asset returns. Therefore, the markets which are characterized by 
regime switching property of asset return, more appropriate technique is to analyze their state 
transition property instead of conventional methods of time series analysis (Zhou & Yin 2003; Yin & 
Zhou, 2004; Guidolin & Timmermann, 2007; Bae et al., 2014). The present study suggest Markov 
switching model to be more appropriate method of analysis is such scenario.

 Markov chain is an important concept in modeling conceptual processes which has evolved 
over a period of time. It assumes that future values depend only on current observation while the 
knowledge of history is irrelevant. Markov switching models are based on the idea of transition of one 
state in to another state which is governed by Markov process. Wikipedia defines Discrete Time 
Markov Chain (DTMC) in the following words;
  

 The idea of construction and analysis of Markov chain is related with the concept of market 
efficiency and the Markov process seems to be consistent with weak form of market efficiency. 
According to the market efficiency theories, the stock prices react according to the information and in 
case of weak form of market efficiency, the past price information is fully incorporated in the current 
price. This implies that it is near to impossible that investor gets abnormal profit over a long period of 
time using the trading rules based on historical price information. The Markov chain assumes that 
prices keep changing within specified but unobserved price range (the present study calls it price 
regime or state) which forms psychological price barriers and in order to break the barriers the market 
needs information. The present study assumes that potential information pushes the prices from one 
regime to another regime. Technically, the prices follow a pattern and there could be several ways of 
analyzing the price pattern and use it for future predictions. The previous studies have applied time 
series methodologies including Exponentially Weighted Moving Average (EWMA), Auto Regressive 
Integrated Moving Average (ARIMA), Generalized Auto Regressive Conditional Hetroscedastic 
(GARCH ) and technical chart analysis techniques but only a handful of researchers have used regime 
switching methodology for analysis. The first step is to identify the regimes, second is to analyze and 
record the frequency of transition of one state into another, third is to calculate the transitional 
probabilities and finally use the probabilities for further price forecasting. The detail of this process is 
discussed in the methodology section.
 

 As stated earlier, few researchers have used the regime switching Markov chain 
methodology in analyzing the stock prices, the distinction of the idea presented here is the 
introduction of several finite state spaces instead of conventional method of 3 major state spaces. PSE 
is among the highly volatile market of the region which is more volatile during low negative return 
regimes and less volatile during positive return periods. This is evident in figure 1 which compares the 
3 days moving average returns of PSE with 3 days volatility. The figure depicts that during the high 
negative return periods the volatility graph is at its peak while returns are more stable during the 
period of positive returns. As conventional approaches like EWMA, ARIMA and GARCH are not 
much effective as the parameters of these models are constants and introducing Ito’s process 4  in 
theses model are extremely complex. Therefore, the present study suggests the use of regime 
switching models to be more appropriate in case of PSE. 
 

Literature Review

 The existing literature provides a good deal of debate on the idea of regime shifts and 
Markov switching models. Since the time of Goldfeld and Quandt (1973) who appears to be the 
pioneers in addressing the existence of regimes and introduced the regime switching regression for 
estimation. Goldfeld and Quandt (1973 b) latter addressed the issues in structural shifts by switching 
regression. Hamilton (1989) improved the model of Goldfeld and Quandt (1973) by allowing regime 
shifts in dependent variable and introduced Markov Switching Autoregressive (MSAR) model. 

4 Ito process is based on Itô calculus, named after Kiyoshi Itô, which extends the methods of calculus to stochastic processes 
such as Brownian motion (see Wiener process). It has important applications in mathematical finance and stochastic differential 
equations. The details of this complex idea is beyond the scope of this paper.

 The application of regime switching models in case of stock market returns was first 
introduced by Turner et al. (1989) who capture the regime shift behavior in mean and variance of 
stock market returns using MSAR. Latter, several researchers (for instance, Chu et al., 1996; Schaller 
& Norden, 1997 & Nishiyama, 1998 etc) studied and highlighted the regime switching property of 
stock returns. Both Cheu et al. (1994) and Schaller and Norden (1997) found regime shifts in stock 
returns. They investigated the relationship between stock returns and their volatility using MSAR and 
found a nonlinear relationship in returns and volatility. Nishiyima (1998) investigated the existence of 
different regimes in aggregate stock returns and their mean variance properties in five industrialized 
countries. He focused more on volatility shifts rather than mean shifts whiles identifying the switching 
behavior and found consistent volatility based regime shifts in all countries. Similarly Maheu and 
McCudy (2000) used regime switching model in US stock market. Wang and Theobald (2007) applied 
MS regression in East Asian countries and found that stock returns in these countries are characterized 
by two and three regimes. Ismail and Zaidi (2008) examined the regime switching model in more 
detail in Malaysia. They used non-linear MSAR framework to capture regime shift behavior in Bursa 
Malaysia. Laha (2006) investigated regime switching behavior in India by using hidden Markov 
model under Bayesian framework. Kumar (2006) analyzed the weekly data using Markov switching 
vector error correction model (MS-VECM) and found the existence of two different regimes 
identified on the basis of stock prices and trading volume. Researchers have also attempted to model 
a nonlinear structure in time series data. For instance, Turner et al. (1989), Schaller and Norden 
(1997), Hamilto and Lin (1996) and Gordon and St-Amour (2000) modeled the nonlinear dynamics 
of stock market volatility. The evidence from developing economies regarding the application of 
Markov chains is still very limited. Although MC is an emerging technique of modeling stock returns 
however, to the best of authors’ knowledge previous researchers have ignored this method of 
modeling stock returns especially in emerging markets. 

Methodology

 By Markov process the present study means a stochastic process {X (t); t ε T} having 
Markov property for a finite set of points (t_0,t_1,…..,t_9). Let Χ be the finite state space Markov 
chain with states(1,2,….10). Given a particular time event t the chain Χ is in state i and pij 5 denotes 
the conditional probability that Χ will be in state j at time t+1 given it was observed in state i at time 
t. In a similar way p_ij^((n)) represents the probability that Χ would transit from state i to state j after 
n transitions, given p_ij^((n))>0. Further, if A is a transition probability matrix of Markov Chain with 
finite state space then the elements of p_ij^((n)) have ergodic properties. The ergodic properties 6 of 
Markov chain include irreducibility, aperiodicity and time homogeneity. In short Markov chain is a 

5 It implicitly assumed here that Markov chain in time homogeneous as the quantity p_ijis independent of time t.
6 If (x0, x1…..xn) is an irreducible, time homogeneous, discrete space Markov chain, with stationary distribution π, then 1/n 
∑_(i=1)^n〖f(x_i )  ⇒ E[f(x)] 〗 for any bounded function f in ∈R.

process where for every n and t1<t2<t3…..tn, we have:

P(x(tn )≤xn |x(t)  t≤t_n-1)=P(x(tn )≤xn |x(t_n-1))

 The Markov property implies that the probability distribution of future prices does not follow 
any particular path which is followed by the price in the past therefore; investor cannot predict the 
future prices just by observing the past prices. To construct the Markov chain the present study taken 
the daily KSE100 index of PSE from 2010 to 2015. The log returns are then classified into 10 states 
based on the range of returns with the difference of 10%. The daily movement of returns for five years 
is closely observed to identify by the pattern of movement of index from one state of return to another. 
Before calculating the transition probability matrix, several tests are conducted to ensure the presence 
of Markov property. Initially, to test the dependence of a state on another, chi square test of 
independence is conducted. To check the stationarity of states, unit root test is also conducted and 
finally to verify the Markov property, AR(1) and AR(2) models are estimated 7 . Based on the 
transition of one state in to another a frequencies are calculated which are latter used to calculate 
transition probabilities. The transition state frequency is converted into transition probabilities as 
below:

 If A is the transition probability matrix of an irreducible, aperiodic finite state Markov chain 
then

 
 The Markov chain with above property is said to be ergodic and possesses a limiting 
distribution π (Baht,  1972). Based on the above mentioned methodology the statistical analysis is 
conducted and results are presented in the next section. In second phase, Monte Carlo (MC) 
simulation method is used to simulate random future data. MC model is given as below:

 Where It is the index at time t, It-1 is the previous value of index and r is the rate of return. 
Where r consists of drift factors defined by (μ-σ^2/2) at time t and a random variance σW_t. Hence,

7 In order to have a Markov property, only AR(1) should be significant and  not AR(2)

The above MC equation is used to generate ten series each from Markov chain and actual stock index 
and the results therefrom are discussed in the next section.
Statistical Analysis

 Initially ten states are designed using a constant range of 0.1% starting from 3% to -4% based 
on the daily index returns. Table 1 presents the descriptive analysis of ten states. The last three 
columns show the mean return of each state and volatility measured by standard deviation and 
coefficient of variation. The descriptive analysis of states shows that 4th and 6th states are highly 
volatile however it is not clear that which initial state is most probable to be transited in to state 4 or 
6. Before analyzing the chain sequence in the mentioned below states it is important to estimates that 
whether or not the chain possesses the Markov property.
 
Table 1.
Descriptive Analysis of States
 

 At first step the chi-square (χ^2) test of independence of states given the current state is 
conducted, the estimated value of the test is significant at the level less than 1%                                                                                             
which shows that the identified states are dependent on its first lag, which is a necessary condition for 
a Markov chain. However, in order to fulfill the Markov chain requirement the identified states must 
be correlated with its first lag which means that in order to predict the next state of returns the only 
information required is the knowledge of the current state of return.

Table 2:
Test of Stationarity and Auto Regression

 Dependent variable is current state and LAG1 represents the state at time t-1 and LGA2 
represents the state at time t-2. To check the stationarity of states Unit root test is conducted which 
remain significant at level. Unit root t-stat is -31.97871 and p-value is 0.000. Parentheses contain 
(standard Error) and [t-statistic]. **** shows the level of significance at the level 1% or less. 

 This assumption is tested using two methods. Firstly the test of autocorrelation using first, 
second and third lag is applied and secondly the test of auto regression using the 1st, 2nd and 3rd order 
is applied. The former shows a significant autocorrelation between the current and first lagged value 
(i.e.AC1= 0.12; sig 0.000) and very weak correlation with the second and third lagged value (i.e. 
AC2=0.01; sig 0.000 and AC3=0.01; sig 0.000) while the latter confirmed that only AR (1) is 
significant. The results of auto regression are presented in table 2. The results of table 2 confirms the 
presence of Markov property in the states identified in this study as only the value of first lag is 
significant. The next step is to construct a state transition matrix. Following is the transition 
probability matrix ‘A’ which is measured on the basis of frequency of transition of one state into 
another. Each component of A is p_ij, where p is the probability of transition of state i into state j, with 
i,j=1,2,3…..10. 

 For example, M is the initial state space which shows the return on index is in state 1 with  p 
= 1.00 at a particular point in time, and then it will shift from state 1 to state 3 with P=1.00 after first 
transition (given as M*A, where A is transition matrix given above). After 6th transition the 
probability of states are presented in (5) below. Following is the output of transition vectors using 
MatLab.

 Similarly, if the initial state is S10 with P=1.00 then after 5th transition, the probability 
distribution of state are given in (6) below:

 The probability distribution of states given above is equal to the stationary transition vector 
T. If probability of return stays in 1st state is 1.00 at time t then there is 38.41% chance that return 
would be in state 4 and 34.31% chance that return would be in state 6 and so on so forth. Finally, based 
on the transitional probability matrix expected return of state j is calculated given state i and using 
these return forecasts future value of KSE index are calculated. Figure 3 shows the comparison of 
actual index and forecasted index. It is evident from figure 3 that based on Markov chain model some 
sort of intuition can be taken regarding the stock indices. 

Figure 3: PSE Index (Actual vs Predicted)

 Further based on Monte Carlo approach random simulations are run for each of the series i.e. 
predicted Markov chain and actual KSE index, the results are depicted in the figure 4 and 5 
respectively. The smoothness of Markov chain simulation is due to the fact that additional variance 
has been absorbed in single state and index prediction can be made with lesser volatility.

Conclusion and Direction for Future Research

 The present study attempts to investigate the presence of Markov property in PSE using the 
data of KSE 100 index. Based on the daily index returns ten return states are identified. To identify the 
Markov property test of dependence of current state on the first lagged state is estimated using AR (1) 
and AR (2) models. The stock transition from one state to another state is calculated and based on the 
relative frequency of transitions a state transition matrix is identified. This transition matrix is further 
employed to calculate the next expected return given a particular state at present. The returns are 
converted in to predicted index which showed that a Markov chain is suitable for modeling stock 
indices. The methodology used in this paper is preliminary in nature because the authors did not find 
any evidence of the use of Markov chain in developing economies especially in Pakistan. Therefore, 
the authors find it justified to start modeling the index using discrete time finite state MC. Due to its 
power of capturing behavioral factors in price modeling, Markov chains are emerging as an alternate 
way of analyzing the time series data. In future, researchers can analyze and model a portfolio of 
individual stocks instead of stock index. There is still need to improve the method of identification of 
states in Markov chains. Instead of discrete time finite state models more complex continuous time 
models can be studies. Last but not least, future researchers can use Markov Chain Monte Carlo 
(MCMC) method under Bayesian framework, in stock price modeling and forecasting.

 Based on the transition probability matrix following is the diagrammatic depiction of regime 
switching Markov chain (Figure 2). The arrows at the top show the probability of transition from high 
return state towards lower return state while arrows at lower side shows the probability of transition 
from low return state towards the high return state. The self-directed arrows at the lower side show the 
probability that the current state shall persist.

Figure 2:  Finite State Space Markov Chain

The transition matrix A fulfills the property of irreducibility and aperiodicity and also it is time 
homogenous.

Where,  = A^n  with n>0 , is a steady state probability vector. 

“DTMC is a random process that undergoes transitions from one 
state to another on a state space. It must possess a property that is 

usually characterized as memorylessness: the probability distribution 
of the next state depends only on the current state and not on the 

sequence of events that preceded it. This specific kind of memoryless-
ness is called the Markov property”.
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Introduction

 Portfolio optimization problem remains one of the most challenging topics for financial 
researchers of this century. The Markowitz classical approach of mean-variance analysis was mainly 
based on maximization of returns while keeping the variance at a constant level. Fama (1965) 
empirically confirmed the accuracy of Bachelier (1914) random walk behavior of stock prices where 
stock price reacts according to the arrival of new information. Analysis of financial time series and 
investigating stock price behaviors has also been a subject of study in finance.
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 Several researchers (Fama 1965; Nelson 1991; Mandelbrot, 1997) argued that stock return 
distribution is leptokurtic and the classical as well as most of the conventional analysis techniques 
ignore the state transition property of asset returns. Therefore, the markets which are characterized by 
regime switching property of asset return, more appropriate technique is to analyze their state 
transition property instead of conventional methods of time series analysis (Zhou & Yin 2003; Yin & 
Zhou, 2004; Guidolin & Timmermann, 2007; Bae et al., 2014). The present study suggest Markov 
switching model to be more appropriate method of analysis is such scenario.

 Markov chain is an important concept in modeling conceptual processes which has evolved 
over a period of time. It assumes that future values depend only on current observation while the 
knowledge of history is irrelevant. Markov switching models are based on the idea of transition of one 
state in to another state which is governed by Markov process. Wikipedia defines Discrete Time 
Markov Chain (DTMC) in the following words;
  

 The idea of construction and analysis of Markov chain is related with the concept of market 
efficiency and the Markov process seems to be consistent with weak form of market efficiency. 
According to the market efficiency theories, the stock prices react according to the information and in 
case of weak form of market efficiency, the past price information is fully incorporated in the current 
price. This implies that it is near to impossible that investor gets abnormal profit over a long period of 
time using the trading rules based on historical price information. The Markov chain assumes that 
prices keep changing within specified but unobserved price range (the present study calls it price 
regime or state) which forms psychological price barriers and in order to break the barriers the market 
needs information. The present study assumes that potential information pushes the prices from one 
regime to another regime. Technically, the prices follow a pattern and there could be several ways of 
analyzing the price pattern and use it for future predictions. The previous studies have applied time 
series methodologies including Exponentially Weighted Moving Average (EWMA), Auto Regressive 
Integrated Moving Average (ARIMA), Generalized Auto Regressive Conditional Hetroscedastic 
(GARCH ) and technical chart analysis techniques but only a handful of researchers have used regime 
switching methodology for analysis. The first step is to identify the regimes, second is to analyze and 
record the frequency of transition of one state into another, third is to calculate the transitional 
probabilities and finally use the probabilities for further price forecasting. The detail of this process is 
discussed in the methodology section.
 

 As stated earlier, few researchers have used the regime switching Markov chain 
methodology in analyzing the stock prices, the distinction of the idea presented here is the 
introduction of several finite state spaces instead of conventional method of 3 major state spaces. PSE 
is among the highly volatile market of the region which is more volatile during low negative return 
regimes and less volatile during positive return periods. This is evident in figure 1 which compares the 
3 days moving average returns of PSE with 3 days volatility. The figure depicts that during the high 
negative return periods the volatility graph is at its peak while returns are more stable during the 
period of positive returns. As conventional approaches like EWMA, ARIMA and GARCH are not 
much effective as the parameters of these models are constants and introducing Ito’s process 4  in 
theses model are extremely complex. Therefore, the present study suggests the use of regime 
switching models to be more appropriate in case of PSE. 
 

Literature Review

 The existing literature provides a good deal of debate on the idea of regime shifts and 
Markov switching models. Since the time of Goldfeld and Quandt (1973) who appears to be the 
pioneers in addressing the existence of regimes and introduced the regime switching regression for 
estimation. Goldfeld and Quandt (1973 b) latter addressed the issues in structural shifts by switching 
regression. Hamilton (1989) improved the model of Goldfeld and Quandt (1973) by allowing regime 
shifts in dependent variable and introduced Markov Switching Autoregressive (MSAR) model. 

4 Ito process is based on Itô calculus, named after Kiyoshi Itô, which extends the methods of calculus to stochastic processes 
such as Brownian motion (see Wiener process). It has important applications in mathematical finance and stochastic differential 
equations. The details of this complex idea is beyond the scope of this paper.

 The application of regime switching models in case of stock market returns was first 
introduced by Turner et al. (1989) who capture the regime shift behavior in mean and variance of 
stock market returns using MSAR. Latter, several researchers (for instance, Chu et al., 1996; Schaller 
& Norden, 1997 & Nishiyama, 1998 etc) studied and highlighted the regime switching property of 
stock returns. Both Cheu et al. (1994) and Schaller and Norden (1997) found regime shifts in stock 
returns. They investigated the relationship between stock returns and their volatility using MSAR and 
found a nonlinear relationship in returns and volatility. Nishiyima (1998) investigated the existence of 
different regimes in aggregate stock returns and their mean variance properties in five industrialized 
countries. He focused more on volatility shifts rather than mean shifts whiles identifying the switching 
behavior and found consistent volatility based regime shifts in all countries. Similarly Maheu and 
McCudy (2000) used regime switching model in US stock market. Wang and Theobald (2007) applied 
MS regression in East Asian countries and found that stock returns in these countries are characterized 
by two and three regimes. Ismail and Zaidi (2008) examined the regime switching model in more 
detail in Malaysia. They used non-linear MSAR framework to capture regime shift behavior in Bursa 
Malaysia. Laha (2006) investigated regime switching behavior in India by using hidden Markov 
model under Bayesian framework. Kumar (2006) analyzed the weekly data using Markov switching 
vector error correction model (MS-VECM) and found the existence of two different regimes 
identified on the basis of stock prices and trading volume. Researchers have also attempted to model 
a nonlinear structure in time series data. For instance, Turner et al. (1989), Schaller and Norden 
(1997), Hamilto and Lin (1996) and Gordon and St-Amour (2000) modeled the nonlinear dynamics 
of stock market volatility. The evidence from developing economies regarding the application of 
Markov chains is still very limited. Although MC is an emerging technique of modeling stock returns 
however, to the best of authors’ knowledge previous researchers have ignored this method of 
modeling stock returns especially in emerging markets. 

Methodology

 By Markov process the present study means a stochastic process {X (t); t ε T} having 
Markov property for a finite set of points (t_0,t_1,…..,t_9). Let Χ be the finite state space Markov 
chain with states(1,2,….10). Given a particular time event t the chain Χ is in state i and pij 5 denotes 
the conditional probability that Χ will be in state j at time t+1 given it was observed in state i at time 
t. In a similar way p_ij^((n)) represents the probability that Χ would transit from state i to state j after 
n transitions, given p_ij^((n))>0. Further, if A is a transition probability matrix of Markov Chain with 
finite state space then the elements of p_ij^((n)) have ergodic properties. The ergodic properties 6 of 
Markov chain include irreducibility, aperiodicity and time homogeneity. In short Markov chain is a 

5 It implicitly assumed here that Markov chain in time homogeneous as the quantity p_ijis independent of time t.
6 If (x0, x1…..xn) is an irreducible, time homogeneous, discrete space Markov chain, with stationary distribution π, then 1/n 
∑_(i=1)^n〖f(x_i )  ⇒ E[f(x)] 〗 for any bounded function f in ∈R.

process where for every n and t1<t2<t3…..tn, we have:

P(x(tn )≤xn |x(t)  t≤t_n-1)=P(x(tn )≤xn |x(t_n-1))

 The Markov property implies that the probability distribution of future prices does not follow 
any particular path which is followed by the price in the past therefore; investor cannot predict the 
future prices just by observing the past prices. To construct the Markov chain the present study taken 
the daily KSE100 index of PSE from 2010 to 2015. The log returns are then classified into 10 states 
based on the range of returns with the difference of 10%. The daily movement of returns for five years 
is closely observed to identify by the pattern of movement of index from one state of return to another. 
Before calculating the transition probability matrix, several tests are conducted to ensure the presence 
of Markov property. Initially, to test the dependence of a state on another, chi square test of 
independence is conducted. To check the stationarity of states, unit root test is also conducted and 
finally to verify the Markov property, AR(1) and AR(2) models are estimated 7 . Based on the 
transition of one state in to another a frequencies are calculated which are latter used to calculate 
transition probabilities. The transition state frequency is converted into transition probabilities as 
below:

 If A is the transition probability matrix of an irreducible, aperiodic finite state Markov chain 
then

 
 The Markov chain with above property is said to be ergodic and possesses a limiting 
distribution π (Baht,  1972). Based on the above mentioned methodology the statistical analysis is 
conducted and results are presented in the next section. In second phase, Monte Carlo (MC) 
simulation method is used to simulate random future data. MC model is given as below:

 Where It is the index at time t, It-1 is the previous value of index and r is the rate of return. 
Where r consists of drift factors defined by (μ-σ^2/2) at time t and a random variance σW_t. Hence,

7 In order to have a Markov property, only AR(1) should be significant and  not AR(2)

The above MC equation is used to generate ten series each from Markov chain and actual stock index 
and the results therefrom are discussed in the next section.
Statistical Analysis

 Initially ten states are designed using a constant range of 0.1% starting from 3% to -4% based 
on the daily index returns. Table 1 presents the descriptive analysis of ten states. The last three 
columns show the mean return of each state and volatility measured by standard deviation and 
coefficient of variation. The descriptive analysis of states shows that 4th and 6th states are highly 
volatile however it is not clear that which initial state is most probable to be transited in to state 4 or 
6. Before analyzing the chain sequence in the mentioned below states it is important to estimates that 
whether or not the chain possesses the Markov property.
 
Table 1.
Descriptive Analysis of States
 

 At first step the chi-square (χ^2) test of independence of states given the current state is 
conducted, the estimated value of the test is significant at the level less than 1%                                                                                             
which shows that the identified states are dependent on its first lag, which is a necessary condition for 
a Markov chain. However, in order to fulfill the Markov chain requirement the identified states must 
be correlated with its first lag which means that in order to predict the next state of returns the only 
information required is the knowledge of the current state of return.

Table 2:
Test of Stationarity and Auto Regression

 Dependent variable is current state and LAG1 represents the state at time t-1 and LGA2 
represents the state at time t-2. To check the stationarity of states Unit root test is conducted which 
remain significant at level. Unit root t-stat is -31.97871 and p-value is 0.000. Parentheses contain 
(standard Error) and [t-statistic]. **** shows the level of significance at the level 1% or less. 

 This assumption is tested using two methods. Firstly the test of autocorrelation using first, 
second and third lag is applied and secondly the test of auto regression using the 1st, 2nd and 3rd order 
is applied. The former shows a significant autocorrelation between the current and first lagged value 
(i.e.AC1= 0.12; sig 0.000) and very weak correlation with the second and third lagged value (i.e. 
AC2=0.01; sig 0.000 and AC3=0.01; sig 0.000) while the latter confirmed that only AR (1) is 
significant. The results of auto regression are presented in table 2. The results of table 2 confirms the 
presence of Markov property in the states identified in this study as only the value of first lag is 
significant. The next step is to construct a state transition matrix. Following is the transition 
probability matrix ‘A’ which is measured on the basis of frequency of transition of one state into 
another. Each component of A is p_ij, where p is the probability of transition of state i into state j, with 
i,j=1,2,3…..10. 

 For example, M is the initial state space which shows the return on index is in state 1 with  p 
= 1.00 at a particular point in time, and then it will shift from state 1 to state 3 with P=1.00 after first 
transition (given as M*A, where A is transition matrix given above). After 6th transition the 
probability of states are presented in (5) below. Following is the output of transition vectors using 
MatLab.

 Similarly, if the initial state is S10 with P=1.00 then after 5th transition, the probability 
distribution of state are given in (6) below:

 The probability distribution of states given above is equal to the stationary transition vector 
T. If probability of return stays in 1st state is 1.00 at time t then there is 38.41% chance that return 
would be in state 4 and 34.31% chance that return would be in state 6 and so on so forth. Finally, based 
on the transitional probability matrix expected return of state j is calculated given state i and using 
these return forecasts future value of KSE index are calculated. Figure 3 shows the comparison of 
actual index and forecasted index. It is evident from figure 3 that based on Markov chain model some 
sort of intuition can be taken regarding the stock indices. 

Figure 3: PSE Index (Actual vs Predicted)

 Further based on Monte Carlo approach random simulations are run for each of the series i.e. 
predicted Markov chain and actual KSE index, the results are depicted in the figure 4 and 5 
respectively. The smoothness of Markov chain simulation is due to the fact that additional variance 
has been absorbed in single state and index prediction can be made with lesser volatility.

Conclusion and Direction for Future Research

 The present study attempts to investigate the presence of Markov property in PSE using the 
data of KSE 100 index. Based on the daily index returns ten return states are identified. To identify the 
Markov property test of dependence of current state on the first lagged state is estimated using AR (1) 
and AR (2) models. The stock transition from one state to another state is calculated and based on the 
relative frequency of transitions a state transition matrix is identified. This transition matrix is further 
employed to calculate the next expected return given a particular state at present. The returns are 
converted in to predicted index which showed that a Markov chain is suitable for modeling stock 
indices. The methodology used in this paper is preliminary in nature because the authors did not find 
any evidence of the use of Markov chain in developing economies especially in Pakistan. Therefore, 
the authors find it justified to start modeling the index using discrete time finite state MC. Due to its 
power of capturing behavioral factors in price modeling, Markov chains are emerging as an alternate 
way of analyzing the time series data. In future, researchers can analyze and model a portfolio of 
individual stocks instead of stock index. There is still need to improve the method of identification of 
states in Markov chains. Instead of discrete time finite state models more complex continuous time 
models can be studies. Last but not least, future researchers can use Markov Chain Monte Carlo 
(MCMC) method under Bayesian framework, in stock price modeling and forecasting.

 Based on the transition probability matrix following is the diagrammatic depiction of regime 
switching Markov chain (Figure 2). The arrows at the top show the probability of transition from high 
return state towards lower return state while arrows at lower side shows the probability of transition 
from low return state towards the high return state. The self-directed arrows at the lower side show the 
probability that the current state shall persist.

Figure 2:  Finite State Space Markov Chain

The transition matrix A fulfills the property of irreducibility and aperiodicity and also it is time 
homogenous.

Where,  = A^n  with n>0 , is a steady state probability vector. 
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Introduction

 Portfolio optimization problem remains one of the most challenging topics for financial 
researchers of this century. The Markowitz classical approach of mean-variance analysis was mainly 
based on maximization of returns while keeping the variance at a constant level. Fama (1965) 
empirically confirmed the accuracy of Bachelier (1914) random walk behavior of stock prices where 
stock price reacts according to the arrival of new information. Analysis of financial time series and 
investigating stock price behaviors has also been a subject of study in finance.
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 Several researchers (Fama 1965; Nelson 1991; Mandelbrot, 1997) argued that stock return 
distribution is leptokurtic and the classical as well as most of the conventional analysis techniques 
ignore the state transition property of asset returns. Therefore, the markets which are characterized by 
regime switching property of asset return, more appropriate technique is to analyze their state 
transition property instead of conventional methods of time series analysis (Zhou & Yin 2003; Yin & 
Zhou, 2004; Guidolin & Timmermann, 2007; Bae et al., 2014). The present study suggest Markov 
switching model to be more appropriate method of analysis is such scenario.

 Markov chain is an important concept in modeling conceptual processes which has evolved 
over a period of time. It assumes that future values depend only on current observation while the 
knowledge of history is irrelevant. Markov switching models are based on the idea of transition of one 
state in to another state which is governed by Markov process. Wikipedia defines Discrete Time 
Markov Chain (DTMC) in the following words;
  

 The idea of construction and analysis of Markov chain is related with the concept of market 
efficiency and the Markov process seems to be consistent with weak form of market efficiency. 
According to the market efficiency theories, the stock prices react according to the information and in 
case of weak form of market efficiency, the past price information is fully incorporated in the current 
price. This implies that it is near to impossible that investor gets abnormal profit over a long period of 
time using the trading rules based on historical price information. The Markov chain assumes that 
prices keep changing within specified but unobserved price range (the present study calls it price 
regime or state) which forms psychological price barriers and in order to break the barriers the market 
needs information. The present study assumes that potential information pushes the prices from one 
regime to another regime. Technically, the prices follow a pattern and there could be several ways of 
analyzing the price pattern and use it for future predictions. The previous studies have applied time 
series methodologies including Exponentially Weighted Moving Average (EWMA), Auto Regressive 
Integrated Moving Average (ARIMA), Generalized Auto Regressive Conditional Hetroscedastic 
(GARCH ) and technical chart analysis techniques but only a handful of researchers have used regime 
switching methodology for analysis. The first step is to identify the regimes, second is to analyze and 
record the frequency of transition of one state into another, third is to calculate the transitional 
probabilities and finally use the probabilities for further price forecasting. The detail of this process is 
discussed in the methodology section.
 

 As stated earlier, few researchers have used the regime switching Markov chain 
methodology in analyzing the stock prices, the distinction of the idea presented here is the 
introduction of several finite state spaces instead of conventional method of 3 major state spaces. PSE 
is among the highly volatile market of the region which is more volatile during low negative return 
regimes and less volatile during positive return periods. This is evident in figure 1 which compares the 
3 days moving average returns of PSE with 3 days volatility. The figure depicts that during the high 
negative return periods the volatility graph is at its peak while returns are more stable during the 
period of positive returns. As conventional approaches like EWMA, ARIMA and GARCH are not 
much effective as the parameters of these models are constants and introducing Ito’s process 4  in 
theses model are extremely complex. Therefore, the present study suggests the use of regime 
switching models to be more appropriate in case of PSE. 
 

Literature Review

 The existing literature provides a good deal of debate on the idea of regime shifts and 
Markov switching models. Since the time of Goldfeld and Quandt (1973) who appears to be the 
pioneers in addressing the existence of regimes and introduced the regime switching regression for 
estimation. Goldfeld and Quandt (1973 b) latter addressed the issues in structural shifts by switching 
regression. Hamilton (1989) improved the model of Goldfeld and Quandt (1973) by allowing regime 
shifts in dependent variable and introduced Markov Switching Autoregressive (MSAR) model. 

4 Ito process is based on Itô calculus, named after Kiyoshi Itô, which extends the methods of calculus to stochastic processes 
such as Brownian motion (see Wiener process). It has important applications in mathematical finance and stochastic differential 
equations. The details of this complex idea is beyond the scope of this paper.

 The application of regime switching models in case of stock market returns was first 
introduced by Turner et al. (1989) who capture the regime shift behavior in mean and variance of 
stock market returns using MSAR. Latter, several researchers (for instance, Chu et al., 1996; Schaller 
& Norden, 1997 & Nishiyama, 1998 etc) studied and highlighted the regime switching property of 
stock returns. Both Cheu et al. (1994) and Schaller and Norden (1997) found regime shifts in stock 
returns. They investigated the relationship between stock returns and their volatility using MSAR and 
found a nonlinear relationship in returns and volatility. Nishiyima (1998) investigated the existence of 
different regimes in aggregate stock returns and their mean variance properties in five industrialized 
countries. He focused more on volatility shifts rather than mean shifts whiles identifying the switching 
behavior and found consistent volatility based regime shifts in all countries. Similarly Maheu and 
McCudy (2000) used regime switching model in US stock market. Wang and Theobald (2007) applied 
MS regression in East Asian countries and found that stock returns in these countries are characterized 
by two and three regimes. Ismail and Zaidi (2008) examined the regime switching model in more 
detail in Malaysia. They used non-linear MSAR framework to capture regime shift behavior in Bursa 
Malaysia. Laha (2006) investigated regime switching behavior in India by using hidden Markov 
model under Bayesian framework. Kumar (2006) analyzed the weekly data using Markov switching 
vector error correction model (MS-VECM) and found the existence of two different regimes 
identified on the basis of stock prices and trading volume. Researchers have also attempted to model 
a nonlinear structure in time series data. For instance, Turner et al. (1989), Schaller and Norden 
(1997), Hamilto and Lin (1996) and Gordon and St-Amour (2000) modeled the nonlinear dynamics 
of stock market volatility. The evidence from developing economies regarding the application of 
Markov chains is still very limited. Although MC is an emerging technique of modeling stock returns 
however, to the best of authors’ knowledge previous researchers have ignored this method of 
modeling stock returns especially in emerging markets. 

Methodology

 By Markov process the present study means a stochastic process {X (t); t ε T} having 
Markov property for a finite set of points (t_0,t_1,…..,t_9). Let Χ be the finite state space Markov 
chain with states(1,2,….10). Given a particular time event t the chain Χ is in state i and pij 5 denotes 
the conditional probability that Χ will be in state j at time t+1 given it was observed in state i at time 
t. In a similar way p_ij^((n)) represents the probability that Χ would transit from state i to state j after 
n transitions, given p_ij^((n))>0. Further, if A is a transition probability matrix of Markov Chain with 
finite state space then the elements of p_ij^((n)) have ergodic properties. The ergodic properties 6 of 
Markov chain include irreducibility, aperiodicity and time homogeneity. In short Markov chain is a 

5 It implicitly assumed here that Markov chain in time homogeneous as the quantity p_ijis independent of time t.
6 If (x0, x1…..xn) is an irreducible, time homogeneous, discrete space Markov chain, with stationary distribution π, then 1/n 
∑_(i=1)^n〖f(x_i )  ⇒ E[f(x)] 〗 for any bounded function f in ∈R.

process where for every n and t1<t2<t3…..tn, we have:

P(x(tn )≤xn |x(t)  t≤t_n-1)=P(x(tn )≤xn |x(t_n-1))

 The Markov property implies that the probability distribution of future prices does not follow 
any particular path which is followed by the price in the past therefore; investor cannot predict the 
future prices just by observing the past prices. To construct the Markov chain the present study taken 
the daily KSE100 index of PSE from 2010 to 2015. The log returns are then classified into 10 states 
based on the range of returns with the difference of 10%. The daily movement of returns for five years 
is closely observed to identify by the pattern of movement of index from one state of return to another. 
Before calculating the transition probability matrix, several tests are conducted to ensure the presence 
of Markov property. Initially, to test the dependence of a state on another, chi square test of 
independence is conducted. To check the stationarity of states, unit root test is also conducted and 
finally to verify the Markov property, AR(1) and AR(2) models are estimated 7 . Based on the 
transition of one state in to another a frequencies are calculated which are latter used to calculate 
transition probabilities. The transition state frequency is converted into transition probabilities as 
below:

 If A is the transition probability matrix of an irreducible, aperiodic finite state Markov chain 
then

 
 The Markov chain with above property is said to be ergodic and possesses a limiting 
distribution π (Baht,  1972). Based on the above mentioned methodology the statistical analysis is 
conducted and results are presented in the next section. In second phase, Monte Carlo (MC) 
simulation method is used to simulate random future data. MC model is given as below:

 Where It is the index at time t, It-1 is the previous value of index and r is the rate of return. 
Where r consists of drift factors defined by (μ-σ^2/2) at time t and a random variance σW_t. Hence,

7 In order to have a Markov property, only AR(1) should be significant and  not AR(2)

The above MC equation is used to generate ten series each from Markov chain and actual stock index 
and the results therefrom are discussed in the next section.
Statistical Analysis

 Initially ten states are designed using a constant range of 0.1% starting from 3% to -4% based 
on the daily index returns. Table 1 presents the descriptive analysis of ten states. The last three 
columns show the mean return of each state and volatility measured by standard deviation and 
coefficient of variation. The descriptive analysis of states shows that 4th and 6th states are highly 
volatile however it is not clear that which initial state is most probable to be transited in to state 4 or 
6. Before analyzing the chain sequence in the mentioned below states it is important to estimates that 
whether or not the chain possesses the Markov property.
 
Table 1.
Descriptive Analysis of States
 

 At first step the chi-square (χ^2) test of independence of states given the current state is 
conducted, the estimated value of the test is significant at the level less than 1%                                                                                             
which shows that the identified states are dependent on its first lag, which is a necessary condition for 
a Markov chain. However, in order to fulfill the Markov chain requirement the identified states must 
be correlated with its first lag which means that in order to predict the next state of returns the only 
information required is the knowledge of the current state of return.

Table 2:
Test of Stationarity and Auto Regression

 Dependent variable is current state and LAG1 represents the state at time t-1 and LGA2 
represents the state at time t-2. To check the stationarity of states Unit root test is conducted which 
remain significant at level. Unit root t-stat is -31.97871 and p-value is 0.000. Parentheses contain 
(standard Error) and [t-statistic]. **** shows the level of significance at the level 1% or less. 

 This assumption is tested using two methods. Firstly the test of autocorrelation using first, 
second and third lag is applied and secondly the test of auto regression using the 1st, 2nd and 3rd order 
is applied. The former shows a significant autocorrelation between the current and first lagged value 
(i.e.AC1= 0.12; sig 0.000) and very weak correlation with the second and third lagged value (i.e. 
AC2=0.01; sig 0.000 and AC3=0.01; sig 0.000) while the latter confirmed that only AR (1) is 
significant. The results of auto regression are presented in table 2. The results of table 2 confirms the 
presence of Markov property in the states identified in this study as only the value of first lag is 
significant. The next step is to construct a state transition matrix. Following is the transition 
probability matrix ‘A’ which is measured on the basis of frequency of transition of one state into 
another. Each component of A is p_ij, where p is the probability of transition of state i into state j, with 
i,j=1,2,3…..10. 

 For example, M is the initial state space which shows the return on index is in state 1 with  p 
= 1.00 at a particular point in time, and then it will shift from state 1 to state 3 with P=1.00 after first 
transition (given as M*A, where A is transition matrix given above). After 6th transition the 
probability of states are presented in (5) below. Following is the output of transition vectors using 
MatLab.

 Similarly, if the initial state is S10 with P=1.00 then after 5th transition, the probability 
distribution of state are given in (6) below:

 The probability distribution of states given above is equal to the stationary transition vector 
T. If probability of return stays in 1st state is 1.00 at time t then there is 38.41% chance that return 
would be in state 4 and 34.31% chance that return would be in state 6 and so on so forth. Finally, based 
on the transitional probability matrix expected return of state j is calculated given state i and using 
these return forecasts future value of KSE index are calculated. Figure 3 shows the comparison of 
actual index and forecasted index. It is evident from figure 3 that based on Markov chain model some 
sort of intuition can be taken regarding the stock indices. 

Figure 3: PSE Index (Actual vs Predicted)

 Further based on Monte Carlo approach random simulations are run for each of the series i.e. 
predicted Markov chain and actual KSE index, the results are depicted in the figure 4 and 5 
respectively. The smoothness of Markov chain simulation is due to the fact that additional variance 
has been absorbed in single state and index prediction can be made with lesser volatility.

Conclusion and Direction for Future Research

 The present study attempts to investigate the presence of Markov property in PSE using the 
data of KSE 100 index. Based on the daily index returns ten return states are identified. To identify the 
Markov property test of dependence of current state on the first lagged state is estimated using AR (1) 
and AR (2) models. The stock transition from one state to another state is calculated and based on the 
relative frequency of transitions a state transition matrix is identified. This transition matrix is further 
employed to calculate the next expected return given a particular state at present. The returns are 
converted in to predicted index which showed that a Markov chain is suitable for modeling stock 
indices. The methodology used in this paper is preliminary in nature because the authors did not find 
any evidence of the use of Markov chain in developing economies especially in Pakistan. Therefore, 
the authors find it justified to start modeling the index using discrete time finite state MC. Due to its 
power of capturing behavioral factors in price modeling, Markov chains are emerging as an alternate 
way of analyzing the time series data. In future, researchers can analyze and model a portfolio of 
individual stocks instead of stock index. There is still need to improve the method of identification of 
states in Markov chains. Instead of discrete time finite state models more complex continuous time 
models can be studies. Last but not least, future researchers can use Markov Chain Monte Carlo 
(MCMC) method under Bayesian framework, in stock price modeling and forecasting.

 Based on the transition probability matrix following is the diagrammatic depiction of regime 
switching Markov chain (Figure 2). The arrows at the top show the probability of transition from high 
return state towards lower return state while arrows at lower side shows the probability of transition 
from low return state towards the high return state. The self-directed arrows at the lower side show the 
probability that the current state shall persist.

Figure 2:  Finite State Space Markov Chain

The transition matrix A fulfills the property of irreducibility and aperiodicity and also it is time 
homogenous.

Where,  = A^n  with n>0 , is a steady state probability vector. 
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The Existing stock price models are mainly based on time series methodologies which are hard to 
estimate and involve lots of assumptions. This study, in contrast, assumes that the stock prices follow 
stochastic process that possesses Markov dependency with finite state transition probabilities and 
proposes an alternate methodology for stock price modeling. For this purpose, daily stock index data 
from Pakistan Stock Exchange (PSE) is collected from 2010-2015 and categorized in to 10 state 
spaces. Based on the results of state transition model, the study highlights the most probable state of 
return and also its transition into another state. Further, the study used Monte Carlo method of stock 
index simulations both Markov chain and original stock index. The analysis shows that it is possible 
to model and forecast stock index by capturing the underlying Markov process. The results of the 
study are helpful for investors in selecting the right time of making investment and for academician to 
think about more sophisticated methods of state identification. 
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Introduction

 Portfolio optimization problem remains one of the most challenging topics for financial 
researchers of this century. The Markowitz classical approach of mean-variance analysis was mainly 
based on maximization of returns while keeping the variance at a constant level. Fama (1965) 
empirically confirmed the accuracy of Bachelier (1914) random walk behavior of stock prices where 
stock price reacts according to the arrival of new information. Analysis of financial time series and 
investigating stock price behaviors has also been a subject of study in finance.
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 Several researchers (Fama 1965; Nelson 1991; Mandelbrot, 1997) argued that stock return 
distribution is leptokurtic and the classical as well as most of the conventional analysis techniques 
ignore the state transition property of asset returns. Therefore, the markets which are characterized by 
regime switching property of asset return, more appropriate technique is to analyze their state 
transition property instead of conventional methods of time series analysis (Zhou & Yin 2003; Yin & 
Zhou, 2004; Guidolin & Timmermann, 2007; Bae et al., 2014). The present study suggest Markov 
switching model to be more appropriate method of analysis is such scenario.

 Markov chain is an important concept in modeling conceptual processes which has evolved 
over a period of time. It assumes that future values depend only on current observation while the 
knowledge of history is irrelevant. Markov switching models are based on the idea of transition of one 
state in to another state which is governed by Markov process. Wikipedia defines Discrete Time 
Markov Chain (DTMC) in the following words;
  

 The idea of construction and analysis of Markov chain is related with the concept of market 
efficiency and the Markov process seems to be consistent with weak form of market efficiency. 
According to the market efficiency theories, the stock prices react according to the information and in 
case of weak form of market efficiency, the past price information is fully incorporated in the current 
price. This implies that it is near to impossible that investor gets abnormal profit over a long period of 
time using the trading rules based on historical price information. The Markov chain assumes that 
prices keep changing within specified but unobserved price range (the present study calls it price 
regime or state) which forms psychological price barriers and in order to break the barriers the market 
needs information. The present study assumes that potential information pushes the prices from one 
regime to another regime. Technically, the prices follow a pattern and there could be several ways of 
analyzing the price pattern and use it for future predictions. The previous studies have applied time 
series methodologies including Exponentially Weighted Moving Average (EWMA), Auto Regressive 
Integrated Moving Average (ARIMA), Generalized Auto Regressive Conditional Hetroscedastic 
(GARCH ) and technical chart analysis techniques but only a handful of researchers have used regime 
switching methodology for analysis. The first step is to identify the regimes, second is to analyze and 
record the frequency of transition of one state into another, third is to calculate the transitional 
probabilities and finally use the probabilities for further price forecasting. The detail of this process is 
discussed in the methodology section.
 

 As stated earlier, few researchers have used the regime switching Markov chain 
methodology in analyzing the stock prices, the distinction of the idea presented here is the 
introduction of several finite state spaces instead of conventional method of 3 major state spaces. PSE 
is among the highly volatile market of the region which is more volatile during low negative return 
regimes and less volatile during positive return periods. This is evident in figure 1 which compares the 
3 days moving average returns of PSE with 3 days volatility. The figure depicts that during the high 
negative return periods the volatility graph is at its peak while returns are more stable during the 
period of positive returns. As conventional approaches like EWMA, ARIMA and GARCH are not 
much effective as the parameters of these models are constants and introducing Ito’s process 4  in 
theses model are extremely complex. Therefore, the present study suggests the use of regime 
switching models to be more appropriate in case of PSE. 
 

Literature Review

 The existing literature provides a good deal of debate on the idea of regime shifts and 
Markov switching models. Since the time of Goldfeld and Quandt (1973) who appears to be the 
pioneers in addressing the existence of regimes and introduced the regime switching regression for 
estimation. Goldfeld and Quandt (1973 b) latter addressed the issues in structural shifts by switching 
regression. Hamilton (1989) improved the model of Goldfeld and Quandt (1973) by allowing regime 
shifts in dependent variable and introduced Markov Switching Autoregressive (MSAR) model. 

4 Ito process is based on Itô calculus, named after Kiyoshi Itô, which extends the methods of calculus to stochastic processes 
such as Brownian motion (see Wiener process). It has important applications in mathematical finance and stochastic differential 
equations. The details of this complex idea is beyond the scope of this paper.

 The application of regime switching models in case of stock market returns was first 
introduced by Turner et al. (1989) who capture the regime shift behavior in mean and variance of 
stock market returns using MSAR. Latter, several researchers (for instance, Chu et al., 1996; Schaller 
& Norden, 1997 & Nishiyama, 1998 etc) studied and highlighted the regime switching property of 
stock returns. Both Cheu et al. (1994) and Schaller and Norden (1997) found regime shifts in stock 
returns. They investigated the relationship between stock returns and their volatility using MSAR and 
found a nonlinear relationship in returns and volatility. Nishiyima (1998) investigated the existence of 
different regimes in aggregate stock returns and their mean variance properties in five industrialized 
countries. He focused more on volatility shifts rather than mean shifts whiles identifying the switching 
behavior and found consistent volatility based regime shifts in all countries. Similarly Maheu and 
McCudy (2000) used regime switching model in US stock market. Wang and Theobald (2007) applied 
MS regression in East Asian countries and found that stock returns in these countries are characterized 
by two and three regimes. Ismail and Zaidi (2008) examined the regime switching model in more 
detail in Malaysia. They used non-linear MSAR framework to capture regime shift behavior in Bursa 
Malaysia. Laha (2006) investigated regime switching behavior in India by using hidden Markov 
model under Bayesian framework. Kumar (2006) analyzed the weekly data using Markov switching 
vector error correction model (MS-VECM) and found the existence of two different regimes 
identified on the basis of stock prices and trading volume. Researchers have also attempted to model 
a nonlinear structure in time series data. For instance, Turner et al. (1989), Schaller and Norden 
(1997), Hamilto and Lin (1996) and Gordon and St-Amour (2000) modeled the nonlinear dynamics 
of stock market volatility. The evidence from developing economies regarding the application of 
Markov chains is still very limited. Although MC is an emerging technique of modeling stock returns 
however, to the best of authors’ knowledge previous researchers have ignored this method of 
modeling stock returns especially in emerging markets. 

Methodology

 By Markov process the present study means a stochastic process {X (t); t ε T} having 
Markov property for a finite set of points (t_0,t_1,…..,t_9). Let Χ be the finite state space Markov 
chain with states(1,2,….10). Given a particular time event t the chain Χ is in state i and pij 5 denotes 
the conditional probability that Χ will be in state j at time t+1 given it was observed in state i at time 
t. In a similar way p_ij^((n)) represents the probability that Χ would transit from state i to state j after 
n transitions, given p_ij^((n))>0. Further, if A is a transition probability matrix of Markov Chain with 
finite state space then the elements of p_ij^((n)) have ergodic properties. The ergodic properties 6 of 
Markov chain include irreducibility, aperiodicity and time homogeneity. In short Markov chain is a 

5 It implicitly assumed here that Markov chain in time homogeneous as the quantity p_ijis independent of time t.
6 If (x0, x1…..xn) is an irreducible, time homogeneous, discrete space Markov chain, with stationary distribution π, then 1/n 
∑_(i=1)^n〖f(x_i )  ⇒ E[f(x)] 〗 for any bounded function f in ∈R.

process where for every n and t1<t2<t3…..tn, we have:

P(x(tn )≤xn |x(t)  t≤t_n-1)=P(x(tn )≤xn |x(t_n-1))

 The Markov property implies that the probability distribution of future prices does not follow 
any particular path which is followed by the price in the past therefore; investor cannot predict the 
future prices just by observing the past prices. To construct the Markov chain the present study taken 
the daily KSE100 index of PSE from 2010 to 2015. The log returns are then classified into 10 states 
based on the range of returns with the difference of 10%. The daily movement of returns for five years 
is closely observed to identify by the pattern of movement of index from one state of return to another. 
Before calculating the transition probability matrix, several tests are conducted to ensure the presence 
of Markov property. Initially, to test the dependence of a state on another, chi square test of 
independence is conducted. To check the stationarity of states, unit root test is also conducted and 
finally to verify the Markov property, AR(1) and AR(2) models are estimated 7 . Based on the 
transition of one state in to another a frequencies are calculated which are latter used to calculate 
transition probabilities. The transition state frequency is converted into transition probabilities as 
below:

 If A is the transition probability matrix of an irreducible, aperiodic finite state Markov chain 
then

 
 The Markov chain with above property is said to be ergodic and possesses a limiting 
distribution π (Baht,  1972). Based on the above mentioned methodology the statistical analysis is 
conducted and results are presented in the next section. In second phase, Monte Carlo (MC) 
simulation method is used to simulate random future data. MC model is given as below:

 Where It is the index at time t, It-1 is the previous value of index and r is the rate of return. 
Where r consists of drift factors defined by (μ-σ^2/2) at time t and a random variance σW_t. Hence,

7 In order to have a Markov property, only AR(1) should be significant and  not AR(2)

The above MC equation is used to generate ten series each from Markov chain and actual stock index 
and the results therefrom are discussed in the next section.
Statistical Analysis

 Initially ten states are designed using a constant range of 0.1% starting from 3% to -4% based 
on the daily index returns. Table 1 presents the descriptive analysis of ten states. The last three 
columns show the mean return of each state and volatility measured by standard deviation and 
coefficient of variation. The descriptive analysis of states shows that 4th and 6th states are highly 
volatile however it is not clear that which initial state is most probable to be transited in to state 4 or 
6. Before analyzing the chain sequence in the mentioned below states it is important to estimates that 
whether or not the chain possesses the Markov property.
 
Table 1.
Descriptive Analysis of States
 

 At first step the chi-square (χ^2) test of independence of states given the current state is 
conducted, the estimated value of the test is significant at the level less than 1%                                                                                             
which shows that the identified states are dependent on its first lag, which is a necessary condition for 
a Markov chain. However, in order to fulfill the Markov chain requirement the identified states must 
be correlated with its first lag which means that in order to predict the next state of returns the only 
information required is the knowledge of the current state of return.

Table 2:
Test of Stationarity and Auto Regression

 Dependent variable is current state and LAG1 represents the state at time t-1 and LGA2 
represents the state at time t-2. To check the stationarity of states Unit root test is conducted which 
remain significant at level. Unit root t-stat is -31.97871 and p-value is 0.000. Parentheses contain 
(standard Error) and [t-statistic]. **** shows the level of significance at the level 1% or less. 

 This assumption is tested using two methods. Firstly the test of autocorrelation using first, 
second and third lag is applied and secondly the test of auto regression using the 1st, 2nd and 3rd order 
is applied. The former shows a significant autocorrelation between the current and first lagged value 
(i.e.AC1= 0.12; sig 0.000) and very weak correlation with the second and third lagged value (i.e. 
AC2=0.01; sig 0.000 and AC3=0.01; sig 0.000) while the latter confirmed that only AR (1) is 
significant. The results of auto regression are presented in table 2. The results of table 2 confirms the 
presence of Markov property in the states identified in this study as only the value of first lag is 
significant. The next step is to construct a state transition matrix. Following is the transition 
probability matrix ‘A’ which is measured on the basis of frequency of transition of one state into 
another. Each component of A is p_ij, where p is the probability of transition of state i into state j, with 
i,j=1,2,3…..10. 

 For example, M is the initial state space which shows the return on index is in state 1 with  p 
= 1.00 at a particular point in time, and then it will shift from state 1 to state 3 with P=1.00 after first 
transition (given as M*A, where A is transition matrix given above). After 6th transition the 
probability of states are presented in (5) below. Following is the output of transition vectors using 
MatLab.

 Similarly, if the initial state is S10 with P=1.00 then after 5th transition, the probability 
distribution of state are given in (6) below:

 The probability distribution of states given above is equal to the stationary transition vector 
T. If probability of return stays in 1st state is 1.00 at time t then there is 38.41% chance that return 
would be in state 4 and 34.31% chance that return would be in state 6 and so on so forth. Finally, based 
on the transitional probability matrix expected return of state j is calculated given state i and using 
these return forecasts future value of KSE index are calculated. Figure 3 shows the comparison of 
actual index and forecasted index. It is evident from figure 3 that based on Markov chain model some 
sort of intuition can be taken regarding the stock indices. 

Figure 3: PSE Index (Actual vs Predicted)

 Further based on Monte Carlo approach random simulations are run for each of the series i.e. 
predicted Markov chain and actual KSE index, the results are depicted in the figure 4 and 5 
respectively. The smoothness of Markov chain simulation is due to the fact that additional variance 
has been absorbed in single state and index prediction can be made with lesser volatility.

Conclusion and Direction for Future Research

 The present study attempts to investigate the presence of Markov property in PSE using the 
data of KSE 100 index. Based on the daily index returns ten return states are identified. To identify the 
Markov property test of dependence of current state on the first lagged state is estimated using AR (1) 
and AR (2) models. The stock transition from one state to another state is calculated and based on the 
relative frequency of transitions a state transition matrix is identified. This transition matrix is further 
employed to calculate the next expected return given a particular state at present. The returns are 
converted in to predicted index which showed that a Markov chain is suitable for modeling stock 
indices. The methodology used in this paper is preliminary in nature because the authors did not find 
any evidence of the use of Markov chain in developing economies especially in Pakistan. Therefore, 
the authors find it justified to start modeling the index using discrete time finite state MC. Due to its 
power of capturing behavioral factors in price modeling, Markov chains are emerging as an alternate 
way of analyzing the time series data. In future, researchers can analyze and model a portfolio of 
individual stocks instead of stock index. There is still need to improve the method of identification of 
states in Markov chains. Instead of discrete time finite state models more complex continuous time 
models can be studies. Last but not least, future researchers can use Markov Chain Monte Carlo 
(MCMC) method under Bayesian framework, in stock price modeling and forecasting.

 Based on the transition probability matrix following is the diagrammatic depiction of regime 
switching Markov chain (Figure 2). The arrows at the top show the probability of transition from high 
return state towards lower return state while arrows at lower side shows the probability of transition 
from low return state towards the high return state. The self-directed arrows at the lower side show the 
probability that the current state shall persist.

Figure 2:  Finite State Space Markov Chain

The transition matrix A fulfills the property of irreducibility and aperiodicity and also it is time 
homogenous.

Where,  = A^n  with n>0 , is a steady state probability vector. 
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spaces. Based on the results of state transition model, the study highlights the most probable state of 
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Introduction

 Portfolio optimization problem remains one of the most challenging topics for financial 
researchers of this century. The Markowitz classical approach of mean-variance analysis was mainly 
based on maximization of returns while keeping the variance at a constant level. Fama (1965) 
empirically confirmed the accuracy of Bachelier (1914) random walk behavior of stock prices where 
stock price reacts according to the arrival of new information. Analysis of financial time series and 
investigating stock price behaviors has also been a subject of study in finance.
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 Several researchers (Fama 1965; Nelson 1991; Mandelbrot, 1997) argued that stock return 
distribution is leptokurtic and the classical as well as most of the conventional analysis techniques 
ignore the state transition property of asset returns. Therefore, the markets which are characterized by 
regime switching property of asset return, more appropriate technique is to analyze their state 
transition property instead of conventional methods of time series analysis (Zhou & Yin 2003; Yin & 
Zhou, 2004; Guidolin & Timmermann, 2007; Bae et al., 2014). The present study suggest Markov 
switching model to be more appropriate method of analysis is such scenario.

 Markov chain is an important concept in modeling conceptual processes which has evolved 
over a period of time. It assumes that future values depend only on current observation while the 
knowledge of history is irrelevant. Markov switching models are based on the idea of transition of one 
state in to another state which is governed by Markov process. Wikipedia defines Discrete Time 
Markov Chain (DTMC) in the following words;
  

 The idea of construction and analysis of Markov chain is related with the concept of market 
efficiency and the Markov process seems to be consistent with weak form of market efficiency. 
According to the market efficiency theories, the stock prices react according to the information and in 
case of weak form of market efficiency, the past price information is fully incorporated in the current 
price. This implies that it is near to impossible that investor gets abnormal profit over a long period of 
time using the trading rules based on historical price information. The Markov chain assumes that 
prices keep changing within specified but unobserved price range (the present study calls it price 
regime or state) which forms psychological price barriers and in order to break the barriers the market 
needs information. The present study assumes that potential information pushes the prices from one 
regime to another regime. Technically, the prices follow a pattern and there could be several ways of 
analyzing the price pattern and use it for future predictions. The previous studies have applied time 
series methodologies including Exponentially Weighted Moving Average (EWMA), Auto Regressive 
Integrated Moving Average (ARIMA), Generalized Auto Regressive Conditional Hetroscedastic 
(GARCH ) and technical chart analysis techniques but only a handful of researchers have used regime 
switching methodology for analysis. The first step is to identify the regimes, second is to analyze and 
record the frequency of transition of one state into another, third is to calculate the transitional 
probabilities and finally use the probabilities for further price forecasting. The detail of this process is 
discussed in the methodology section.
 

 As stated earlier, few researchers have used the regime switching Markov chain 
methodology in analyzing the stock prices, the distinction of the idea presented here is the 
introduction of several finite state spaces instead of conventional method of 3 major state spaces. PSE 
is among the highly volatile market of the region which is more volatile during low negative return 
regimes and less volatile during positive return periods. This is evident in figure 1 which compares the 
3 days moving average returns of PSE with 3 days volatility. The figure depicts that during the high 
negative return periods the volatility graph is at its peak while returns are more stable during the 
period of positive returns. As conventional approaches like EWMA, ARIMA and GARCH are not 
much effective as the parameters of these models are constants and introducing Ito’s process 4  in 
theses model are extremely complex. Therefore, the present study suggests the use of regime 
switching models to be more appropriate in case of PSE. 
 

Literature Review

 The existing literature provides a good deal of debate on the idea of regime shifts and 
Markov switching models. Since the time of Goldfeld and Quandt (1973) who appears to be the 
pioneers in addressing the existence of regimes and introduced the regime switching regression for 
estimation. Goldfeld and Quandt (1973 b) latter addressed the issues in structural shifts by switching 
regression. Hamilton (1989) improved the model of Goldfeld and Quandt (1973) by allowing regime 
shifts in dependent variable and introduced Markov Switching Autoregressive (MSAR) model. 

4 Ito process is based on Itô calculus, named after Kiyoshi Itô, which extends the methods of calculus to stochastic processes 
such as Brownian motion (see Wiener process). It has important applications in mathematical finance and stochastic differential 
equations. The details of this complex idea is beyond the scope of this paper.

 The application of regime switching models in case of stock market returns was first 
introduced by Turner et al. (1989) who capture the regime shift behavior in mean and variance of 
stock market returns using MSAR. Latter, several researchers (for instance, Chu et al., 1996; Schaller 
& Norden, 1997 & Nishiyama, 1998 etc) studied and highlighted the regime switching property of 
stock returns. Both Cheu et al. (1994) and Schaller and Norden (1997) found regime shifts in stock 
returns. They investigated the relationship between stock returns and their volatility using MSAR and 
found a nonlinear relationship in returns and volatility. Nishiyima (1998) investigated the existence of 
different regimes in aggregate stock returns and their mean variance properties in five industrialized 
countries. He focused more on volatility shifts rather than mean shifts whiles identifying the switching 
behavior and found consistent volatility based regime shifts in all countries. Similarly Maheu and 
McCudy (2000) used regime switching model in US stock market. Wang and Theobald (2007) applied 
MS regression in East Asian countries and found that stock returns in these countries are characterized 
by two and three regimes. Ismail and Zaidi (2008) examined the regime switching model in more 
detail in Malaysia. They used non-linear MSAR framework to capture regime shift behavior in Bursa 
Malaysia. Laha (2006) investigated regime switching behavior in India by using hidden Markov 
model under Bayesian framework. Kumar (2006) analyzed the weekly data using Markov switching 
vector error correction model (MS-VECM) and found the existence of two different regimes 
identified on the basis of stock prices and trading volume. Researchers have also attempted to model 
a nonlinear structure in time series data. For instance, Turner et al. (1989), Schaller and Norden 
(1997), Hamilto and Lin (1996) and Gordon and St-Amour (2000) modeled the nonlinear dynamics 
of stock market volatility. The evidence from developing economies regarding the application of 
Markov chains is still very limited. Although MC is an emerging technique of modeling stock returns 
however, to the best of authors’ knowledge previous researchers have ignored this method of 
modeling stock returns especially in emerging markets. 

Methodology

 By Markov process the present study means a stochastic process {X (t); t ε T} having 
Markov property for a finite set of points (t_0,t_1,…..,t_9). Let Χ be the finite state space Markov 
chain with states(1,2,….10). Given a particular time event t the chain Χ is in state i and pij 5 denotes 
the conditional probability that Χ will be in state j at time t+1 given it was observed in state i at time 
t. In a similar way p_ij^((n)) represents the probability that Χ would transit from state i to state j after 
n transitions, given p_ij^((n))>0. Further, if A is a transition probability matrix of Markov Chain with 
finite state space then the elements of p_ij^((n)) have ergodic properties. The ergodic properties 6 of 
Markov chain include irreducibility, aperiodicity and time homogeneity. In short Markov chain is a 

5 It implicitly assumed here that Markov chain in time homogeneous as the quantity p_ijis independent of time t.
6 If (x0, x1…..xn) is an irreducible, time homogeneous, discrete space Markov chain, with stationary distribution π, then 1/n 
∑_(i=1)^n〖f(x_i )  ⇒ E[f(x)] 〗 for any bounded function f in ∈R.

process where for every n and t1<t2<t3…..tn, we have:

P(x(tn )≤xn |x(t)  t≤t_n-1)=P(x(tn )≤xn |x(t_n-1))

 The Markov property implies that the probability distribution of future prices does not follow 
any particular path which is followed by the price in the past therefore; investor cannot predict the 
future prices just by observing the past prices. To construct the Markov chain the present study taken 
the daily KSE100 index of PSE from 2010 to 2015. The log returns are then classified into 10 states 
based on the range of returns with the difference of 10%. The daily movement of returns for five years 
is closely observed to identify by the pattern of movement of index from one state of return to another. 
Before calculating the transition probability matrix, several tests are conducted to ensure the presence 
of Markov property. Initially, to test the dependence of a state on another, chi square test of 
independence is conducted. To check the stationarity of states, unit root test is also conducted and 
finally to verify the Markov property, AR(1) and AR(2) models are estimated 7 . Based on the 
transition of one state in to another a frequencies are calculated which are latter used to calculate 
transition probabilities. The transition state frequency is converted into transition probabilities as 
below:

 If A is the transition probability matrix of an irreducible, aperiodic finite state Markov chain 
then

 
 The Markov chain with above property is said to be ergodic and possesses a limiting 
distribution π (Baht,  1972). Based on the above mentioned methodology the statistical analysis is 
conducted and results are presented in the next section. In second phase, Monte Carlo (MC) 
simulation method is used to simulate random future data. MC model is given as below:

 Where It is the index at time t, It-1 is the previous value of index and r is the rate of return. 
Where r consists of drift factors defined by (μ-σ^2/2) at time t and a random variance σW_t. Hence,

7 In order to have a Markov property, only AR(1) should be significant and  not AR(2)

The above MC equation is used to generate ten series each from Markov chain and actual stock index 
and the results therefrom are discussed in the next section.
Statistical Analysis

 Initially ten states are designed using a constant range of 0.1% starting from 3% to -4% based 
on the daily index returns. Table 1 presents the descriptive analysis of ten states. The last three 
columns show the mean return of each state and volatility measured by standard deviation and 
coefficient of variation. The descriptive analysis of states shows that 4th and 6th states are highly 
volatile however it is not clear that which initial state is most probable to be transited in to state 4 or 
6. Before analyzing the chain sequence in the mentioned below states it is important to estimates that 
whether or not the chain possesses the Markov property.
 
Table 1.
Descriptive Analysis of States
 

 At first step the chi-square (χ^2) test of independence of states given the current state is 
conducted, the estimated value of the test is significant at the level less than 1%                                                                                             
which shows that the identified states are dependent on its first lag, which is a necessary condition for 
a Markov chain. However, in order to fulfill the Markov chain requirement the identified states must 
be correlated with its first lag which means that in order to predict the next state of returns the only 
information required is the knowledge of the current state of return.

Table 2:
Test of Stationarity and Auto Regression

 Dependent variable is current state and LAG1 represents the state at time t-1 and LGA2 
represents the state at time t-2. To check the stationarity of states Unit root test is conducted which 
remain significant at level. Unit root t-stat is -31.97871 and p-value is 0.000. Parentheses contain 
(standard Error) and [t-statistic]. **** shows the level of significance at the level 1% or less. 

 This assumption is tested using two methods. Firstly the test of autocorrelation using first, 
second and third lag is applied and secondly the test of auto regression using the 1st, 2nd and 3rd order 
is applied. The former shows a significant autocorrelation between the current and first lagged value 
(i.e.AC1= 0.12; sig 0.000) and very weak correlation with the second and third lagged value (i.e. 
AC2=0.01; sig 0.000 and AC3=0.01; sig 0.000) while the latter confirmed that only AR (1) is 
significant. The results of auto regression are presented in table 2. The results of table 2 confirms the 
presence of Markov property in the states identified in this study as only the value of first lag is 
significant. The next step is to construct a state transition matrix. Following is the transition 
probability matrix ‘A’ which is measured on the basis of frequency of transition of one state into 
another. Each component of A is p_ij, where p is the probability of transition of state i into state j, with 
i,j=1,2,3…..10. 

 For example, M is the initial state space which shows the return on index is in state 1 with  p 
= 1.00 at a particular point in time, and then it will shift from state 1 to state 3 with P=1.00 after first 
transition (given as M*A, where A is transition matrix given above). After 6th transition the 
probability of states are presented in (5) below. Following is the output of transition vectors using 
MatLab.

 Similarly, if the initial state is S10 with P=1.00 then after 5th transition, the probability 
distribution of state are given in (6) below:

 The probability distribution of states given above is equal to the stationary transition vector 
T. If probability of return stays in 1st state is 1.00 at time t then there is 38.41% chance that return 
would be in state 4 and 34.31% chance that return would be in state 6 and so on so forth. Finally, based 
on the transitional probability matrix expected return of state j is calculated given state i and using 
these return forecasts future value of KSE index are calculated. Figure 3 shows the comparison of 
actual index and forecasted index. It is evident from figure 3 that based on Markov chain model some 
sort of intuition can be taken regarding the stock indices. 

Figure 3: PSE Index (Actual vs Predicted)

 Further based on Monte Carlo approach random simulations are run for each of the series i.e. 
predicted Markov chain and actual KSE index, the results are depicted in the figure 4 and 5 
respectively. The smoothness of Markov chain simulation is due to the fact that additional variance 
has been absorbed in single state and index prediction can be made with lesser volatility.

Conclusion and Direction for Future Research

 The present study attempts to investigate the presence of Markov property in PSE using the 
data of KSE 100 index. Based on the daily index returns ten return states are identified. To identify the 
Markov property test of dependence of current state on the first lagged state is estimated using AR (1) 
and AR (2) models. The stock transition from one state to another state is calculated and based on the 
relative frequency of transitions a state transition matrix is identified. This transition matrix is further 
employed to calculate the next expected return given a particular state at present. The returns are 
converted in to predicted index which showed that a Markov chain is suitable for modeling stock 
indices. The methodology used in this paper is preliminary in nature because the authors did not find 
any evidence of the use of Markov chain in developing economies especially in Pakistan. Therefore, 
the authors find it justified to start modeling the index using discrete time finite state MC. Due to its 
power of capturing behavioral factors in price modeling, Markov chains are emerging as an alternate 
way of analyzing the time series data. In future, researchers can analyze and model a portfolio of 
individual stocks instead of stock index. There is still need to improve the method of identification of 
states in Markov chains. Instead of discrete time finite state models more complex continuous time 
models can be studies. Last but not least, future researchers can use Markov Chain Monte Carlo 
(MCMC) method under Bayesian framework, in stock price modeling and forecasting.

 Based on the transition probability matrix following is the diagrammatic depiction of regime 
switching Markov chain (Figure 2). The arrows at the top show the probability of transition from high 
return state towards lower return state while arrows at lower side shows the probability of transition 
from low return state towards the high return state. The self-directed arrows at the lower side show the 
probability that the current state shall persist.

Figure 2:  Finite State Space Markov Chain

The transition matrix A fulfills the property of irreducibility and aperiodicity and also it is time 
homogenous.

Where,  = A^n  with n>0 , is a steady state probability vector. 

State (S)

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

Mean

0.0311

0.0232

0.0128

0.0043

0.0000

-0.0042

-0.0145

-0.0251

-0.0328

-0.0425

SD

0.0010

0.0012

0.0026

0.0024

0.0000

0.0027

0.0026

0.0026

0.0017

0.0024

CV

0.03215

0.05172

0.20312

0.5581

0.0000

0.6428

0.1793

0.1035

0.0518

0.0564

State Range (% Returns)

0.030 and above

Below 0.030 to 0.021

Below 0.021  to 0.010

Below 0.010 to 0.001

--------0 --------

Below 0 to -0.009

Below -0.009  to -0.020

Below -0.020 to -0.030

Below -0.030 to -0.040

Below -0.040 
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Abstract

The Existing stock price models are mainly based on time series methodologies which are hard to 
estimate and involve lots of assumptions. This study, in contrast, assumes that the stock prices follow 
stochastic process that possesses Markov dependency with finite state transition probabilities and 
proposes an alternate methodology for stock price modeling. For this purpose, daily stock index data 
from Pakistan Stock Exchange (PSE) is collected from 2010-2015 and categorized in to 10 state 
spaces. Based on the results of state transition model, the study highlights the most probable state of 
return and also its transition into another state. Further, the study used Monte Carlo method of stock 
index simulations both Markov chain and original stock index. The analysis shows that it is possible 
to model and forecast stock index by capturing the underlying Markov process. The results of the 
study are helpful for investors in selecting the right time of making investment and for academician to 
think about more sophisticated methods of state identification. 

Keywords: Markov Chain, Stock Index, Finite State Space, Weak-form-Efficiency, Monte Carlo 
Simulation.

JEL Classification: G100

Introduction

 Portfolio optimization problem remains one of the most challenging topics for financial 
researchers of this century. The Markowitz classical approach of mean-variance analysis was mainly 
based on maximization of returns while keeping the variance at a constant level. Fama (1965) 
empirically confirmed the accuracy of Bachelier (1914) random walk behavior of stock prices where 
stock price reacts according to the arrival of new information. Analysis of financial time series and 
investigating stock price behaviors has also been a subject of study in finance.
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2 PhD/Assistant Professor, Department of Management Sciences, COMSATS University, Islamabad, Lahore Campus.
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 Several researchers (Fama 1965; Nelson 1991; Mandelbrot, 1997) argued that stock return 
distribution is leptokurtic and the classical as well as most of the conventional analysis techniques 
ignore the state transition property of asset returns. Therefore, the markets which are characterized by 
regime switching property of asset return, more appropriate technique is to analyze their state 
transition property instead of conventional methods of time series analysis (Zhou & Yin 2003; Yin & 
Zhou, 2004; Guidolin & Timmermann, 2007; Bae et al., 2014). The present study suggest Markov 
switching model to be more appropriate method of analysis is such scenario.

 Markov chain is an important concept in modeling conceptual processes which has evolved 
over a period of time. It assumes that future values depend only on current observation while the 
knowledge of history is irrelevant. Markov switching models are based on the idea of transition of one 
state in to another state which is governed by Markov process. Wikipedia defines Discrete Time 
Markov Chain (DTMC) in the following words;
  

 The idea of construction and analysis of Markov chain is related with the concept of market 
efficiency and the Markov process seems to be consistent with weak form of market efficiency. 
According to the market efficiency theories, the stock prices react according to the information and in 
case of weak form of market efficiency, the past price information is fully incorporated in the current 
price. This implies that it is near to impossible that investor gets abnormal profit over a long period of 
time using the trading rules based on historical price information. The Markov chain assumes that 
prices keep changing within specified but unobserved price range (the present study calls it price 
regime or state) which forms psychological price barriers and in order to break the barriers the market 
needs information. The present study assumes that potential information pushes the prices from one 
regime to another regime. Technically, the prices follow a pattern and there could be several ways of 
analyzing the price pattern and use it for future predictions. The previous studies have applied time 
series methodologies including Exponentially Weighted Moving Average (EWMA), Auto Regressive 
Integrated Moving Average (ARIMA), Generalized Auto Regressive Conditional Hetroscedastic 
(GARCH ) and technical chart analysis techniques but only a handful of researchers have used regime 
switching methodology for analysis. The first step is to identify the regimes, second is to analyze and 
record the frequency of transition of one state into another, third is to calculate the transitional 
probabilities and finally use the probabilities for further price forecasting. The detail of this process is 
discussed in the methodology section.
 

 As stated earlier, few researchers have used the regime switching Markov chain 
methodology in analyzing the stock prices, the distinction of the idea presented here is the 
introduction of several finite state spaces instead of conventional method of 3 major state spaces. PSE 
is among the highly volatile market of the region which is more volatile during low negative return 
regimes and less volatile during positive return periods. This is evident in figure 1 which compares the 
3 days moving average returns of PSE with 3 days volatility. The figure depicts that during the high 
negative return periods the volatility graph is at its peak while returns are more stable during the 
period of positive returns. As conventional approaches like EWMA, ARIMA and GARCH are not 
much effective as the parameters of these models are constants and introducing Ito’s process 4  in 
theses model are extremely complex. Therefore, the present study suggests the use of regime 
switching models to be more appropriate in case of PSE. 
 

Literature Review

 The existing literature provides a good deal of debate on the idea of regime shifts and 
Markov switching models. Since the time of Goldfeld and Quandt (1973) who appears to be the 
pioneers in addressing the existence of regimes and introduced the regime switching regression for 
estimation. Goldfeld and Quandt (1973 b) latter addressed the issues in structural shifts by switching 
regression. Hamilton (1989) improved the model of Goldfeld and Quandt (1973) by allowing regime 
shifts in dependent variable and introduced Markov Switching Autoregressive (MSAR) model. 

4 Ito process is based on Itô calculus, named after Kiyoshi Itô, which extends the methods of calculus to stochastic processes 
such as Brownian motion (see Wiener process). It has important applications in mathematical finance and stochastic differential 
equations. The details of this complex idea is beyond the scope of this paper.

 The application of regime switching models in case of stock market returns was first 
introduced by Turner et al. (1989) who capture the regime shift behavior in mean and variance of 
stock market returns using MSAR. Latter, several researchers (for instance, Chu et al., 1996; Schaller 
& Norden, 1997 & Nishiyama, 1998 etc) studied and highlighted the regime switching property of 
stock returns. Both Cheu et al. (1994) and Schaller and Norden (1997) found regime shifts in stock 
returns. They investigated the relationship between stock returns and their volatility using MSAR and 
found a nonlinear relationship in returns and volatility. Nishiyima (1998) investigated the existence of 
different regimes in aggregate stock returns and their mean variance properties in five industrialized 
countries. He focused more on volatility shifts rather than mean shifts whiles identifying the switching 
behavior and found consistent volatility based regime shifts in all countries. Similarly Maheu and 
McCudy (2000) used regime switching model in US stock market. Wang and Theobald (2007) applied 
MS regression in East Asian countries and found that stock returns in these countries are characterized 
by two and three regimes. Ismail and Zaidi (2008) examined the regime switching model in more 
detail in Malaysia. They used non-linear MSAR framework to capture regime shift behavior in Bursa 
Malaysia. Laha (2006) investigated regime switching behavior in India by using hidden Markov 
model under Bayesian framework. Kumar (2006) analyzed the weekly data using Markov switching 
vector error correction model (MS-VECM) and found the existence of two different regimes 
identified on the basis of stock prices and trading volume. Researchers have also attempted to model 
a nonlinear structure in time series data. For instance, Turner et al. (1989), Schaller and Norden 
(1997), Hamilto and Lin (1996) and Gordon and St-Amour (2000) modeled the nonlinear dynamics 
of stock market volatility. The evidence from developing economies regarding the application of 
Markov chains is still very limited. Although MC is an emerging technique of modeling stock returns 
however, to the best of authors’ knowledge previous researchers have ignored this method of 
modeling stock returns especially in emerging markets. 

Methodology

 By Markov process the present study means a stochastic process {X (t); t ε T} having 
Markov property for a finite set of points (t_0,t_1,…..,t_9). Let Χ be the finite state space Markov 
chain with states(1,2,….10). Given a particular time event t the chain Χ is in state i and pij 5 denotes 
the conditional probability that Χ will be in state j at time t+1 given it was observed in state i at time 
t. In a similar way p_ij^((n)) represents the probability that Χ would transit from state i to state j after 
n transitions, given p_ij^((n))>0. Further, if A is a transition probability matrix of Markov Chain with 
finite state space then the elements of p_ij^((n)) have ergodic properties. The ergodic properties 6 of 
Markov chain include irreducibility, aperiodicity and time homogeneity. In short Markov chain is a 

5 It implicitly assumed here that Markov chain in time homogeneous as the quantity p_ijis independent of time t.
6 If (x0, x1…..xn) is an irreducible, time homogeneous, discrete space Markov chain, with stationary distribution π, then 1/n 
∑_(i=1)^n〖f(x_i )  ⇒ E[f(x)] 〗 for any bounded function f in ∈R.

process where for every n and t1<t2<t3…..tn, we have:

P(x(tn )≤xn |x(t)  t≤t_n-1)=P(x(tn )≤xn |x(t_n-1))

 The Markov property implies that the probability distribution of future prices does not follow 
any particular path which is followed by the price in the past therefore; investor cannot predict the 
future prices just by observing the past prices. To construct the Markov chain the present study taken 
the daily KSE100 index of PSE from 2010 to 2015. The log returns are then classified into 10 states 
based on the range of returns with the difference of 10%. The daily movement of returns for five years 
is closely observed to identify by the pattern of movement of index from one state of return to another. 
Before calculating the transition probability matrix, several tests are conducted to ensure the presence 
of Markov property. Initially, to test the dependence of a state on another, chi square test of 
independence is conducted. To check the stationarity of states, unit root test is also conducted and 
finally to verify the Markov property, AR(1) and AR(2) models are estimated 7 . Based on the 
transition of one state in to another a frequencies are calculated which are latter used to calculate 
transition probabilities. The transition state frequency is converted into transition probabilities as 
below:

 If A is the transition probability matrix of an irreducible, aperiodic finite state Markov chain 
then

 
 The Markov chain with above property is said to be ergodic and possesses a limiting 
distribution π (Baht,  1972). Based on the above mentioned methodology the statistical analysis is 
conducted and results are presented in the next section. In second phase, Monte Carlo (MC) 
simulation method is used to simulate random future data. MC model is given as below:

 Where It is the index at time t, It-1 is the previous value of index and r is the rate of return. 
Where r consists of drift factors defined by (μ-σ^2/2) at time t and a random variance σW_t. Hence,

7 In order to have a Markov property, only AR(1) should be significant and  not AR(2)

The above MC equation is used to generate ten series each from Markov chain and actual stock index 
and the results therefrom are discussed in the next section.
Statistical Analysis

 Initially ten states are designed using a constant range of 0.1% starting from 3% to -4% based 
on the daily index returns. Table 1 presents the descriptive analysis of ten states. The last three 
columns show the mean return of each state and volatility measured by standard deviation and 
coefficient of variation. The descriptive analysis of states shows that 4th and 6th states are highly 
volatile however it is not clear that which initial state is most probable to be transited in to state 4 or 
6. Before analyzing the chain sequence in the mentioned below states it is important to estimates that 
whether or not the chain possesses the Markov property.
 
Table 1.
Descriptive Analysis of States
 

 At first step the chi-square (χ^2) test of independence of states given the current state is 
conducted, the estimated value of the test is significant at the level less than 1%                                                                                             
which shows that the identified states are dependent on its first lag, which is a necessary condition for 
a Markov chain. However, in order to fulfill the Markov chain requirement the identified states must 
be correlated with its first lag which means that in order to predict the next state of returns the only 
information required is the knowledge of the current state of return.

Table 2:
Test of Stationarity and Auto Regression

 Dependent variable is current state and LAG1 represents the state at time t-1 and LGA2 
represents the state at time t-2. To check the stationarity of states Unit root test is conducted which 
remain significant at level. Unit root t-stat is -31.97871 and p-value is 0.000. Parentheses contain 
(standard Error) and [t-statistic]. **** shows the level of significance at the level 1% or less. 

 This assumption is tested using two methods. Firstly the test of autocorrelation using first, 
second and third lag is applied and secondly the test of auto regression using the 1st, 2nd and 3rd order 
is applied. The former shows a significant autocorrelation between the current and first lagged value 
(i.e.AC1= 0.12; sig 0.000) and very weak correlation with the second and third lagged value (i.e. 
AC2=0.01; sig 0.000 and AC3=0.01; sig 0.000) while the latter confirmed that only AR (1) is 
significant. The results of auto regression are presented in table 2. The results of table 2 confirms the 
presence of Markov property in the states identified in this study as only the value of first lag is 
significant. The next step is to construct a state transition matrix. Following is the transition 
probability matrix ‘A’ which is measured on the basis of frequency of transition of one state into 
another. Each component of A is p_ij, where p is the probability of transition of state i into state j, with 
i,j=1,2,3…..10. 

 For example, M is the initial state space which shows the return on index is in state 1 with  p 
= 1.00 at a particular point in time, and then it will shift from state 1 to state 3 with P=1.00 after first 
transition (given as M*A, where A is transition matrix given above). After 6th transition the 
probability of states are presented in (5) below. Following is the output of transition vectors using 
MatLab.

 Similarly, if the initial state is S10 with P=1.00 then after 5th transition, the probability 
distribution of state are given in (6) below:

 The probability distribution of states given above is equal to the stationary transition vector 
T. If probability of return stays in 1st state is 1.00 at time t then there is 38.41% chance that return 
would be in state 4 and 34.31% chance that return would be in state 6 and so on so forth. Finally, based 
on the transitional probability matrix expected return of state j is calculated given state i and using 
these return forecasts future value of KSE index are calculated. Figure 3 shows the comparison of 
actual index and forecasted index. It is evident from figure 3 that based on Markov chain model some 
sort of intuition can be taken regarding the stock indices. 

Figure 3: PSE Index (Actual vs Predicted)

 Further based on Monte Carlo approach random simulations are run for each of the series i.e. 
predicted Markov chain and actual KSE index, the results are depicted in the figure 4 and 5 
respectively. The smoothness of Markov chain simulation is due to the fact that additional variance 
has been absorbed in single state and index prediction can be made with lesser volatility.

Conclusion and Direction for Future Research

 The present study attempts to investigate the presence of Markov property in PSE using the 
data of KSE 100 index. Based on the daily index returns ten return states are identified. To identify the 
Markov property test of dependence of current state on the first lagged state is estimated using AR (1) 
and AR (2) models. The stock transition from one state to another state is calculated and based on the 
relative frequency of transitions a state transition matrix is identified. This transition matrix is further 
employed to calculate the next expected return given a particular state at present. The returns are 
converted in to predicted index which showed that a Markov chain is suitable for modeling stock 
indices. The methodology used in this paper is preliminary in nature because the authors did not find 
any evidence of the use of Markov chain in developing economies especially in Pakistan. Therefore, 
the authors find it justified to start modeling the index using discrete time finite state MC. Due to its 
power of capturing behavioral factors in price modeling, Markov chains are emerging as an alternate 
way of analyzing the time series data. In future, researchers can analyze and model a portfolio of 
individual stocks instead of stock index. There is still need to improve the method of identification of 
states in Markov chains. Instead of discrete time finite state models more complex continuous time 
models can be studies. Last but not least, future researchers can use Markov Chain Monte Carlo 
(MCMC) method under Bayesian framework, in stock price modeling and forecasting.

 Based on the transition probability matrix following is the diagrammatic depiction of regime 
switching Markov chain (Figure 2). The arrows at the top show the probability of transition from high 
return state towards lower return state while arrows at lower side shows the probability of transition 
from low return state towards the high return state. The self-directed arrows at the lower side show the 
probability that the current state shall persist.

Figure 2:  Finite State Space Markov Chain

The transition matrix A fulfills the property of irreducibility and aperiodicity and also it is time 
homogenous.

Where,  = A^n  with n>0 , is a steady state probability vector. 

Variable Model 1 Model 2
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Simulation.
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Introduction

 Portfolio optimization problem remains one of the most challenging topics for financial 
researchers of this century. The Markowitz classical approach of mean-variance analysis was mainly 
based on maximization of returns while keeping the variance at a constant level. Fama (1965) 
empirically confirmed the accuracy of Bachelier (1914) random walk behavior of stock prices where 
stock price reacts according to the arrival of new information. Analysis of financial time series and 
investigating stock price behaviors has also been a subject of study in finance.
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 Several researchers (Fama 1965; Nelson 1991; Mandelbrot, 1997) argued that stock return 
distribution is leptokurtic and the classical as well as most of the conventional analysis techniques 
ignore the state transition property of asset returns. Therefore, the markets which are characterized by 
regime switching property of asset return, more appropriate technique is to analyze their state 
transition property instead of conventional methods of time series analysis (Zhou & Yin 2003; Yin & 
Zhou, 2004; Guidolin & Timmermann, 2007; Bae et al., 2014). The present study suggest Markov 
switching model to be more appropriate method of analysis is such scenario.

 Markov chain is an important concept in modeling conceptual processes which has evolved 
over a period of time. It assumes that future values depend only on current observation while the 
knowledge of history is irrelevant. Markov switching models are based on the idea of transition of one 
state in to another state which is governed by Markov process. Wikipedia defines Discrete Time 
Markov Chain (DTMC) in the following words;
  

 The idea of construction and analysis of Markov chain is related with the concept of market 
efficiency and the Markov process seems to be consistent with weak form of market efficiency. 
According to the market efficiency theories, the stock prices react according to the information and in 
case of weak form of market efficiency, the past price information is fully incorporated in the current 
price. This implies that it is near to impossible that investor gets abnormal profit over a long period of 
time using the trading rules based on historical price information. The Markov chain assumes that 
prices keep changing within specified but unobserved price range (the present study calls it price 
regime or state) which forms psychological price barriers and in order to break the barriers the market 
needs information. The present study assumes that potential information pushes the prices from one 
regime to another regime. Technically, the prices follow a pattern and there could be several ways of 
analyzing the price pattern and use it for future predictions. The previous studies have applied time 
series methodologies including Exponentially Weighted Moving Average (EWMA), Auto Regressive 
Integrated Moving Average (ARIMA), Generalized Auto Regressive Conditional Hetroscedastic 
(GARCH ) and technical chart analysis techniques but only a handful of researchers have used regime 
switching methodology for analysis. The first step is to identify the regimes, second is to analyze and 
record the frequency of transition of one state into another, third is to calculate the transitional 
probabilities and finally use the probabilities for further price forecasting. The detail of this process is 
discussed in the methodology section.
 

 As stated earlier, few researchers have used the regime switching Markov chain 
methodology in analyzing the stock prices, the distinction of the idea presented here is the 
introduction of several finite state spaces instead of conventional method of 3 major state spaces. PSE 
is among the highly volatile market of the region which is more volatile during low negative return 
regimes and less volatile during positive return periods. This is evident in figure 1 which compares the 
3 days moving average returns of PSE with 3 days volatility. The figure depicts that during the high 
negative return periods the volatility graph is at its peak while returns are more stable during the 
period of positive returns. As conventional approaches like EWMA, ARIMA and GARCH are not 
much effective as the parameters of these models are constants and introducing Ito’s process 4  in 
theses model are extremely complex. Therefore, the present study suggests the use of regime 
switching models to be more appropriate in case of PSE. 
 

Literature Review

 The existing literature provides a good deal of debate on the idea of regime shifts and 
Markov switching models. Since the time of Goldfeld and Quandt (1973) who appears to be the 
pioneers in addressing the existence of regimes and introduced the regime switching regression for 
estimation. Goldfeld and Quandt (1973 b) latter addressed the issues in structural shifts by switching 
regression. Hamilton (1989) improved the model of Goldfeld and Quandt (1973) by allowing regime 
shifts in dependent variable and introduced Markov Switching Autoregressive (MSAR) model. 

4 Ito process is based on Itô calculus, named after Kiyoshi Itô, which extends the methods of calculus to stochastic processes 
such as Brownian motion (see Wiener process). It has important applications in mathematical finance and stochastic differential 
equations. The details of this complex idea is beyond the scope of this paper.

 The application of regime switching models in case of stock market returns was first 
introduced by Turner et al. (1989) who capture the regime shift behavior in mean and variance of 
stock market returns using MSAR. Latter, several researchers (for instance, Chu et al., 1996; Schaller 
& Norden, 1997 & Nishiyama, 1998 etc) studied and highlighted the regime switching property of 
stock returns. Both Cheu et al. (1994) and Schaller and Norden (1997) found regime shifts in stock 
returns. They investigated the relationship between stock returns and their volatility using MSAR and 
found a nonlinear relationship in returns and volatility. Nishiyima (1998) investigated the existence of 
different regimes in aggregate stock returns and their mean variance properties in five industrialized 
countries. He focused more on volatility shifts rather than mean shifts whiles identifying the switching 
behavior and found consistent volatility based regime shifts in all countries. Similarly Maheu and 
McCudy (2000) used regime switching model in US stock market. Wang and Theobald (2007) applied 
MS regression in East Asian countries and found that stock returns in these countries are characterized 
by two and three regimes. Ismail and Zaidi (2008) examined the regime switching model in more 
detail in Malaysia. They used non-linear MSAR framework to capture regime shift behavior in Bursa 
Malaysia. Laha (2006) investigated regime switching behavior in India by using hidden Markov 
model under Bayesian framework. Kumar (2006) analyzed the weekly data using Markov switching 
vector error correction model (MS-VECM) and found the existence of two different regimes 
identified on the basis of stock prices and trading volume. Researchers have also attempted to model 
a nonlinear structure in time series data. For instance, Turner et al. (1989), Schaller and Norden 
(1997), Hamilto and Lin (1996) and Gordon and St-Amour (2000) modeled the nonlinear dynamics 
of stock market volatility. The evidence from developing economies regarding the application of 
Markov chains is still very limited. Although MC is an emerging technique of modeling stock returns 
however, to the best of authors’ knowledge previous researchers have ignored this method of 
modeling stock returns especially in emerging markets. 

Methodology

 By Markov process the present study means a stochastic process {X (t); t ε T} having 
Markov property for a finite set of points (t_0,t_1,…..,t_9). Let Χ be the finite state space Markov 
chain with states(1,2,….10). Given a particular time event t the chain Χ is in state i and pij 5 denotes 
the conditional probability that Χ will be in state j at time t+1 given it was observed in state i at time 
t. In a similar way p_ij^((n)) represents the probability that Χ would transit from state i to state j after 
n transitions, given p_ij^((n))>0. Further, if A is a transition probability matrix of Markov Chain with 
finite state space then the elements of p_ij^((n)) have ergodic properties. The ergodic properties 6 of 
Markov chain include irreducibility, aperiodicity and time homogeneity. In short Markov chain is a 

5 It implicitly assumed here that Markov chain in time homogeneous as the quantity p_ijis independent of time t.
6 If (x0, x1…..xn) is an irreducible, time homogeneous, discrete space Markov chain, with stationary distribution π, then 1/n 
∑_(i=1)^n〖f(x_i )  ⇒ E[f(x)] 〗 for any bounded function f in ∈R.

process where for every n and t1<t2<t3…..tn, we have:

P(x(tn )≤xn |x(t)  t≤t_n-1)=P(x(tn )≤xn |x(t_n-1))

 The Markov property implies that the probability distribution of future prices does not follow 
any particular path which is followed by the price in the past therefore; investor cannot predict the 
future prices just by observing the past prices. To construct the Markov chain the present study taken 
the daily KSE100 index of PSE from 2010 to 2015. The log returns are then classified into 10 states 
based on the range of returns with the difference of 10%. The daily movement of returns for five years 
is closely observed to identify by the pattern of movement of index from one state of return to another. 
Before calculating the transition probability matrix, several tests are conducted to ensure the presence 
of Markov property. Initially, to test the dependence of a state on another, chi square test of 
independence is conducted. To check the stationarity of states, unit root test is also conducted and 
finally to verify the Markov property, AR(1) and AR(2) models are estimated 7 . Based on the 
transition of one state in to another a frequencies are calculated which are latter used to calculate 
transition probabilities. The transition state frequency is converted into transition probabilities as 
below:

 If A is the transition probability matrix of an irreducible, aperiodic finite state Markov chain 
then

 
 The Markov chain with above property is said to be ergodic and possesses a limiting 
distribution π (Baht,  1972). Based on the above mentioned methodology the statistical analysis is 
conducted and results are presented in the next section. In second phase, Monte Carlo (MC) 
simulation method is used to simulate random future data. MC model is given as below:

 Where It is the index at time t, It-1 is the previous value of index and r is the rate of return. 
Where r consists of drift factors defined by (μ-σ^2/2) at time t and a random variance σW_t. Hence,

7 In order to have a Markov property, only AR(1) should be significant and  not AR(2)

The above MC equation is used to generate ten series each from Markov chain and actual stock index 
and the results therefrom are discussed in the next section.
Statistical Analysis

 Initially ten states are designed using a constant range of 0.1% starting from 3% to -4% based 
on the daily index returns. Table 1 presents the descriptive analysis of ten states. The last three 
columns show the mean return of each state and volatility measured by standard deviation and 
coefficient of variation. The descriptive analysis of states shows that 4th and 6th states are highly 
volatile however it is not clear that which initial state is most probable to be transited in to state 4 or 
6. Before analyzing the chain sequence in the mentioned below states it is important to estimates that 
whether or not the chain possesses the Markov property.
 
Table 1.
Descriptive Analysis of States
 

 At first step the chi-square (χ^2) test of independence of states given the current state is 
conducted, the estimated value of the test is significant at the level less than 1%                                                                                             
which shows that the identified states are dependent on its first lag, which is a necessary condition for 
a Markov chain. However, in order to fulfill the Markov chain requirement the identified states must 
be correlated with its first lag which means that in order to predict the next state of returns the only 
information required is the knowledge of the current state of return.

Table 2:
Test of Stationarity and Auto Regression

 Dependent variable is current state and LAG1 represents the state at time t-1 and LGA2 
represents the state at time t-2. To check the stationarity of states Unit root test is conducted which 
remain significant at level. Unit root t-stat is -31.97871 and p-value is 0.000. Parentheses contain 
(standard Error) and [t-statistic]. **** shows the level of significance at the level 1% or less. 

 This assumption is tested using two methods. Firstly the test of autocorrelation using first, 
second and third lag is applied and secondly the test of auto regression using the 1st, 2nd and 3rd order 
is applied. The former shows a significant autocorrelation between the current and first lagged value 
(i.e.AC1= 0.12; sig 0.000) and very weak correlation with the second and third lagged value (i.e. 
AC2=0.01; sig 0.000 and AC3=0.01; sig 0.000) while the latter confirmed that only AR (1) is 
significant. The results of auto regression are presented in table 2. The results of table 2 confirms the 
presence of Markov property in the states identified in this study as only the value of first lag is 
significant. The next step is to construct a state transition matrix. Following is the transition 
probability matrix ‘A’ which is measured on the basis of frequency of transition of one state into 
another. Each component of A is p_ij, where p is the probability of transition of state i into state j, with 
i,j=1,2,3…..10. 

 For example, M is the initial state space which shows the return on index is in state 1 with  p 
= 1.00 at a particular point in time, and then it will shift from state 1 to state 3 with P=1.00 after first 
transition (given as M*A, where A is transition matrix given above). After 6th transition the 
probability of states are presented in (5) below. Following is the output of transition vectors using 
MatLab.

 Similarly, if the initial state is S10 with P=1.00 then after 5th transition, the probability 
distribution of state are given in (6) below:

 The probability distribution of states given above is equal to the stationary transition vector 
T. If probability of return stays in 1st state is 1.00 at time t then there is 38.41% chance that return 
would be in state 4 and 34.31% chance that return would be in state 6 and so on so forth. Finally, based 
on the transitional probability matrix expected return of state j is calculated given state i and using 
these return forecasts future value of KSE index are calculated. Figure 3 shows the comparison of 
actual index and forecasted index. It is evident from figure 3 that based on Markov chain model some 
sort of intuition can be taken regarding the stock indices. 

Figure 3: PSE Index (Actual vs Predicted)

 Further based on Monte Carlo approach random simulations are run for each of the series i.e. 
predicted Markov chain and actual KSE index, the results are depicted in the figure 4 and 5 
respectively. The smoothness of Markov chain simulation is due to the fact that additional variance 
has been absorbed in single state and index prediction can be made with lesser volatility.

Conclusion and Direction for Future Research

 The present study attempts to investigate the presence of Markov property in PSE using the 
data of KSE 100 index. Based on the daily index returns ten return states are identified. To identify the 
Markov property test of dependence of current state on the first lagged state is estimated using AR (1) 
and AR (2) models. The stock transition from one state to another state is calculated and based on the 
relative frequency of transitions a state transition matrix is identified. This transition matrix is further 
employed to calculate the next expected return given a particular state at present. The returns are 
converted in to predicted index which showed that a Markov chain is suitable for modeling stock 
indices. The methodology used in this paper is preliminary in nature because the authors did not find 
any evidence of the use of Markov chain in developing economies especially in Pakistan. Therefore, 
the authors find it justified to start modeling the index using discrete time finite state MC. Due to its 
power of capturing behavioral factors in price modeling, Markov chains are emerging as an alternate 
way of analyzing the time series data. In future, researchers can analyze and model a portfolio of 
individual stocks instead of stock index. There is still need to improve the method of identification of 
states in Markov chains. Instead of discrete time finite state models more complex continuous time 
models can be studies. Last but not least, future researchers can use Markov Chain Monte Carlo 
(MCMC) method under Bayesian framework, in stock price modeling and forecasting.

 Based on the transition probability matrix following is the diagrammatic depiction of regime 
switching Markov chain (Figure 2). The arrows at the top show the probability of transition from high 
return state towards lower return state while arrows at lower side shows the probability of transition 
from low return state towards the high return state. The self-directed arrows at the lower side show the 
probability that the current state shall persist.

Figure 2:  Finite State Space Markov Chain

The transition matrix A fulfills the property of irreducibility and aperiodicity and also it is time 
homogenous.

Where,  = A^n  with n>0 , is a steady state probability vector. 
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Abstract

The Existing stock price models are mainly based on time series methodologies which are hard to 
estimate and involve lots of assumptions. This study, in contrast, assumes that the stock prices follow 
stochastic process that possesses Markov dependency with finite state transition probabilities and 
proposes an alternate methodology for stock price modeling. For this purpose, daily stock index data 
from Pakistan Stock Exchange (PSE) is collected from 2010-2015 and categorized in to 10 state 
spaces. Based on the results of state transition model, the study highlights the most probable state of 
return and also its transition into another state. Further, the study used Monte Carlo method of stock 
index simulations both Markov chain and original stock index. The analysis shows that it is possible 
to model and forecast stock index by capturing the underlying Markov process. The results of the 
study are helpful for investors in selecting the right time of making investment and for academician to 
think about more sophisticated methods of state identification. 
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Introduction

 Portfolio optimization problem remains one of the most challenging topics for financial 
researchers of this century. The Markowitz classical approach of mean-variance analysis was mainly 
based on maximization of returns while keeping the variance at a constant level. Fama (1965) 
empirically confirmed the accuracy of Bachelier (1914) random walk behavior of stock prices where 
stock price reacts according to the arrival of new information. Analysis of financial time series and 
investigating stock price behaviors has also been a subject of study in finance.
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 Several researchers (Fama 1965; Nelson 1991; Mandelbrot, 1997) argued that stock return 
distribution is leptokurtic and the classical as well as most of the conventional analysis techniques 
ignore the state transition property of asset returns. Therefore, the markets which are characterized by 
regime switching property of asset return, more appropriate technique is to analyze their state 
transition property instead of conventional methods of time series analysis (Zhou & Yin 2003; Yin & 
Zhou, 2004; Guidolin & Timmermann, 2007; Bae et al., 2014). The present study suggest Markov 
switching model to be more appropriate method of analysis is such scenario.

 Markov chain is an important concept in modeling conceptual processes which has evolved 
over a period of time. It assumes that future values depend only on current observation while the 
knowledge of history is irrelevant. Markov switching models are based on the idea of transition of one 
state in to another state which is governed by Markov process. Wikipedia defines Discrete Time 
Markov Chain (DTMC) in the following words;
  

 The idea of construction and analysis of Markov chain is related with the concept of market 
efficiency and the Markov process seems to be consistent with weak form of market efficiency. 
According to the market efficiency theories, the stock prices react according to the information and in 
case of weak form of market efficiency, the past price information is fully incorporated in the current 
price. This implies that it is near to impossible that investor gets abnormal profit over a long period of 
time using the trading rules based on historical price information. The Markov chain assumes that 
prices keep changing within specified but unobserved price range (the present study calls it price 
regime or state) which forms psychological price barriers and in order to break the barriers the market 
needs information. The present study assumes that potential information pushes the prices from one 
regime to another regime. Technically, the prices follow a pattern and there could be several ways of 
analyzing the price pattern and use it for future predictions. The previous studies have applied time 
series methodologies including Exponentially Weighted Moving Average (EWMA), Auto Regressive 
Integrated Moving Average (ARIMA), Generalized Auto Regressive Conditional Hetroscedastic 
(GARCH ) and technical chart analysis techniques but only a handful of researchers have used regime 
switching methodology for analysis. The first step is to identify the regimes, second is to analyze and 
record the frequency of transition of one state into another, third is to calculate the transitional 
probabilities and finally use the probabilities for further price forecasting. The detail of this process is 
discussed in the methodology section.
 

 As stated earlier, few researchers have used the regime switching Markov chain 
methodology in analyzing the stock prices, the distinction of the idea presented here is the 
introduction of several finite state spaces instead of conventional method of 3 major state spaces. PSE 
is among the highly volatile market of the region which is more volatile during low negative return 
regimes and less volatile during positive return periods. This is evident in figure 1 which compares the 
3 days moving average returns of PSE with 3 days volatility. The figure depicts that during the high 
negative return periods the volatility graph is at its peak while returns are more stable during the 
period of positive returns. As conventional approaches like EWMA, ARIMA and GARCH are not 
much effective as the parameters of these models are constants and introducing Ito’s process 4  in 
theses model are extremely complex. Therefore, the present study suggests the use of regime 
switching models to be more appropriate in case of PSE. 
 

Literature Review

 The existing literature provides a good deal of debate on the idea of regime shifts and 
Markov switching models. Since the time of Goldfeld and Quandt (1973) who appears to be the 
pioneers in addressing the existence of regimes and introduced the regime switching regression for 
estimation. Goldfeld and Quandt (1973 b) latter addressed the issues in structural shifts by switching 
regression. Hamilton (1989) improved the model of Goldfeld and Quandt (1973) by allowing regime 
shifts in dependent variable and introduced Markov Switching Autoregressive (MSAR) model. 

4 Ito process is based on Itô calculus, named after Kiyoshi Itô, which extends the methods of calculus to stochastic processes 
such as Brownian motion (see Wiener process). It has important applications in mathematical finance and stochastic differential 
equations. The details of this complex idea is beyond the scope of this paper.

 The application of regime switching models in case of stock market returns was first 
introduced by Turner et al. (1989) who capture the regime shift behavior in mean and variance of 
stock market returns using MSAR. Latter, several researchers (for instance, Chu et al., 1996; Schaller 
& Norden, 1997 & Nishiyama, 1998 etc) studied and highlighted the regime switching property of 
stock returns. Both Cheu et al. (1994) and Schaller and Norden (1997) found regime shifts in stock 
returns. They investigated the relationship between stock returns and their volatility using MSAR and 
found a nonlinear relationship in returns and volatility. Nishiyima (1998) investigated the existence of 
different regimes in aggregate stock returns and their mean variance properties in five industrialized 
countries. He focused more on volatility shifts rather than mean shifts whiles identifying the switching 
behavior and found consistent volatility based regime shifts in all countries. Similarly Maheu and 
McCudy (2000) used regime switching model in US stock market. Wang and Theobald (2007) applied 
MS regression in East Asian countries and found that stock returns in these countries are characterized 
by two and three regimes. Ismail and Zaidi (2008) examined the regime switching model in more 
detail in Malaysia. They used non-linear MSAR framework to capture regime shift behavior in Bursa 
Malaysia. Laha (2006) investigated regime switching behavior in India by using hidden Markov 
model under Bayesian framework. Kumar (2006) analyzed the weekly data using Markov switching 
vector error correction model (MS-VECM) and found the existence of two different regimes 
identified on the basis of stock prices and trading volume. Researchers have also attempted to model 
a nonlinear structure in time series data. For instance, Turner et al. (1989), Schaller and Norden 
(1997), Hamilto and Lin (1996) and Gordon and St-Amour (2000) modeled the nonlinear dynamics 
of stock market volatility. The evidence from developing economies regarding the application of 
Markov chains is still very limited. Although MC is an emerging technique of modeling stock returns 
however, to the best of authors’ knowledge previous researchers have ignored this method of 
modeling stock returns especially in emerging markets. 

Methodology

 By Markov process the present study means a stochastic process {X (t); t ε T} having 
Markov property for a finite set of points (t_0,t_1,…..,t_9). Let Χ be the finite state space Markov 
chain with states(1,2,….10). Given a particular time event t the chain Χ is in state i and pij 5 denotes 
the conditional probability that Χ will be in state j at time t+1 given it was observed in state i at time 
t. In a similar way p_ij^((n)) represents the probability that Χ would transit from state i to state j after 
n transitions, given p_ij^((n))>0. Further, if A is a transition probability matrix of Markov Chain with 
finite state space then the elements of p_ij^((n)) have ergodic properties. The ergodic properties 6 of 
Markov chain include irreducibility, aperiodicity and time homogeneity. In short Markov chain is a 

5 It implicitly assumed here that Markov chain in time homogeneous as the quantity p_ijis independent of time t.
6 If (x0, x1…..xn) is an irreducible, time homogeneous, discrete space Markov chain, with stationary distribution π, then 1/n 
∑_(i=1)^n〖f(x_i )  ⇒ E[f(x)] 〗 for any bounded function f in ∈R.

process where for every n and t1<t2<t3…..tn, we have:

P(x(tn )≤xn |x(t)  t≤t_n-1)=P(x(tn )≤xn |x(t_n-1))

 The Markov property implies that the probability distribution of future prices does not follow 
any particular path which is followed by the price in the past therefore; investor cannot predict the 
future prices just by observing the past prices. To construct the Markov chain the present study taken 
the daily KSE100 index of PSE from 2010 to 2015. The log returns are then classified into 10 states 
based on the range of returns with the difference of 10%. The daily movement of returns for five years 
is closely observed to identify by the pattern of movement of index from one state of return to another. 
Before calculating the transition probability matrix, several tests are conducted to ensure the presence 
of Markov property. Initially, to test the dependence of a state on another, chi square test of 
independence is conducted. To check the stationarity of states, unit root test is also conducted and 
finally to verify the Markov property, AR(1) and AR(2) models are estimated 7 . Based on the 
transition of one state in to another a frequencies are calculated which are latter used to calculate 
transition probabilities. The transition state frequency is converted into transition probabilities as 
below:

 If A is the transition probability matrix of an irreducible, aperiodic finite state Markov chain 
then

 
 The Markov chain with above property is said to be ergodic and possesses a limiting 
distribution π (Baht,  1972). Based on the above mentioned methodology the statistical analysis is 
conducted and results are presented in the next section. In second phase, Monte Carlo (MC) 
simulation method is used to simulate random future data. MC model is given as below:

 Where It is the index at time t, It-1 is the previous value of index and r is the rate of return. 
Where r consists of drift factors defined by (μ-σ^2/2) at time t and a random variance σW_t. Hence,

7 In order to have a Markov property, only AR(1) should be significant and  not AR(2)

The above MC equation is used to generate ten series each from Markov chain and actual stock index 
and the results therefrom are discussed in the next section.
Statistical Analysis

 Initially ten states are designed using a constant range of 0.1% starting from 3% to -4% based 
on the daily index returns. Table 1 presents the descriptive analysis of ten states. The last three 
columns show the mean return of each state and volatility measured by standard deviation and 
coefficient of variation. The descriptive analysis of states shows that 4th and 6th states are highly 
volatile however it is not clear that which initial state is most probable to be transited in to state 4 or 
6. Before analyzing the chain sequence in the mentioned below states it is important to estimates that 
whether or not the chain possesses the Markov property.
 
Table 1.
Descriptive Analysis of States
 

 At first step the chi-square (χ^2) test of independence of states given the current state is 
conducted, the estimated value of the test is significant at the level less than 1%                                                                                             
which shows that the identified states are dependent on its first lag, which is a necessary condition for 
a Markov chain. However, in order to fulfill the Markov chain requirement the identified states must 
be correlated with its first lag which means that in order to predict the next state of returns the only 
information required is the knowledge of the current state of return.

Table 2:
Test of Stationarity and Auto Regression

 Dependent variable is current state and LAG1 represents the state at time t-1 and LGA2 
represents the state at time t-2. To check the stationarity of states Unit root test is conducted which 
remain significant at level. Unit root t-stat is -31.97871 and p-value is 0.000. Parentheses contain 
(standard Error) and [t-statistic]. **** shows the level of significance at the level 1% or less. 

 This assumption is tested using two methods. Firstly the test of autocorrelation using first, 
second and third lag is applied and secondly the test of auto regression using the 1st, 2nd and 3rd order 
is applied. The former shows a significant autocorrelation between the current and first lagged value 
(i.e.AC1= 0.12; sig 0.000) and very weak correlation with the second and third lagged value (i.e. 
AC2=0.01; sig 0.000 and AC3=0.01; sig 0.000) while the latter confirmed that only AR (1) is 
significant. The results of auto regression are presented in table 2. The results of table 2 confirms the 
presence of Markov property in the states identified in this study as only the value of first lag is 
significant. The next step is to construct a state transition matrix. Following is the transition 
probability matrix ‘A’ which is measured on the basis of frequency of transition of one state into 
another. Each component of A is p_ij, where p is the probability of transition of state i into state j, with 
i,j=1,2,3…..10. 

 For example, M is the initial state space which shows the return on index is in state 1 with  p 
= 1.00 at a particular point in time, and then it will shift from state 1 to state 3 with P=1.00 after first 
transition (given as M*A, where A is transition matrix given above). After 6th transition the 
probability of states are presented in (5) below. Following is the output of transition vectors using 
MatLab.

 Similarly, if the initial state is S10 with P=1.00 then after 5th transition, the probability 
distribution of state are given in (6) below:

 The probability distribution of states given above is equal to the stationary transition vector 
T. If probability of return stays in 1st state is 1.00 at time t then there is 38.41% chance that return 
would be in state 4 and 34.31% chance that return would be in state 6 and so on so forth. Finally, based 
on the transitional probability matrix expected return of state j is calculated given state i and using 
these return forecasts future value of KSE index are calculated. Figure 3 shows the comparison of 
actual index and forecasted index. It is evident from figure 3 that based on Markov chain model some 
sort of intuition can be taken regarding the stock indices. 

Figure 3: PSE Index (Actual vs Predicted)

 Further based on Monte Carlo approach random simulations are run for each of the series i.e. 
predicted Markov chain and actual KSE index, the results are depicted in the figure 4 and 5 
respectively. The smoothness of Markov chain simulation is due to the fact that additional variance 
has been absorbed in single state and index prediction can be made with lesser volatility.

Conclusion and Direction for Future Research

 The present study attempts to investigate the presence of Markov property in PSE using the 
data of KSE 100 index. Based on the daily index returns ten return states are identified. To identify the 
Markov property test of dependence of current state on the first lagged state is estimated using AR (1) 
and AR (2) models. The stock transition from one state to another state is calculated and based on the 
relative frequency of transitions a state transition matrix is identified. This transition matrix is further 
employed to calculate the next expected return given a particular state at present. The returns are 
converted in to predicted index which showed that a Markov chain is suitable for modeling stock 
indices. The methodology used in this paper is preliminary in nature because the authors did not find 
any evidence of the use of Markov chain in developing economies especially in Pakistan. Therefore, 
the authors find it justified to start modeling the index using discrete time finite state MC. Due to its 
power of capturing behavioral factors in price modeling, Markov chains are emerging as an alternate 
way of analyzing the time series data. In future, researchers can analyze and model a portfolio of 
individual stocks instead of stock index. There is still need to improve the method of identification of 
states in Markov chains. Instead of discrete time finite state models more complex continuous time 
models can be studies. Last but not least, future researchers can use Markov Chain Monte Carlo 
(MCMC) method under Bayesian framework, in stock price modeling and forecasting.

 Based on the transition probability matrix following is the diagrammatic depiction of regime 
switching Markov chain (Figure 2). The arrows at the top show the probability of transition from high 
return state towards lower return state while arrows at lower side shows the probability of transition 
from low return state towards the high return state. The self-directed arrows at the lower side show the 
probability that the current state shall persist.

Figure 2:  Finite State Space Markov Chain

The transition matrix A fulfills the property of irreducibility and aperiodicity and also it is time 
homogenous.

Where,  = A^n  with n>0 , is a steady state probability vector. 
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MODELING STOCK INDEX USING FINITE 
STATE MARKOV CHAIN
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Abstract

The Existing stock price models are mainly based on time series methodologies which are hard to 
estimate and involve lots of assumptions. This study, in contrast, assumes that the stock prices follow 
stochastic process that possesses Markov dependency with finite state transition probabilities and 
proposes an alternate methodology for stock price modeling. For this purpose, daily stock index data 
from Pakistan Stock Exchange (PSE) is collected from 2010-2015 and categorized in to 10 state 
spaces. Based on the results of state transition model, the study highlights the most probable state of 
return and also its transition into another state. Further, the study used Monte Carlo method of stock 
index simulations both Markov chain and original stock index. The analysis shows that it is possible 
to model and forecast stock index by capturing the underlying Markov process. The results of the 
study are helpful for investors in selecting the right time of making investment and for academician to 
think about more sophisticated methods of state identification. 

Keywords: Markov Chain, Stock Index, Finite State Space, Weak-form-Efficiency, Monte Carlo 
Simulation.

JEL Classification: G100

Introduction

 Portfolio optimization problem remains one of the most challenging topics for financial 
researchers of this century. The Markowitz classical approach of mean-variance analysis was mainly 
based on maximization of returns while keeping the variance at a constant level. Fama (1965) 
empirically confirmed the accuracy of Bachelier (1914) random walk behavior of stock prices where 
stock price reacts according to the arrival of new information. Analysis of financial time series and 
investigating stock price behaviors has also been a subject of study in finance.

1 PhD/Assistant Professor, Noon Business School, University of Sargodha. Email: hammad.hassan@uos.edu.pk
2 PhD/Assistant Professor, Department of Management Sciences, COMSATS University, Islamabad, Lahore Campus.
Email: snazir@cuilahore.edu.pk
3 PhD/Associate Professor, Noon Business School, University of Sargodha. Email: ghulam.ali@uos.edu.pk

 Several researchers (Fama 1965; Nelson 1991; Mandelbrot, 1997) argued that stock return 
distribution is leptokurtic and the classical as well as most of the conventional analysis techniques 
ignore the state transition property of asset returns. Therefore, the markets which are characterized by 
regime switching property of asset return, more appropriate technique is to analyze their state 
transition property instead of conventional methods of time series analysis (Zhou & Yin 2003; Yin & 
Zhou, 2004; Guidolin & Timmermann, 2007; Bae et al., 2014). The present study suggest Markov 
switching model to be more appropriate method of analysis is such scenario.

 Markov chain is an important concept in modeling conceptual processes which has evolved 
over a period of time. It assumes that future values depend only on current observation while the 
knowledge of history is irrelevant. Markov switching models are based on the idea of transition of one 
state in to another state which is governed by Markov process. Wikipedia defines Discrete Time 
Markov Chain (DTMC) in the following words;
  

 The idea of construction and analysis of Markov chain is related with the concept of market 
efficiency and the Markov process seems to be consistent with weak form of market efficiency. 
According to the market efficiency theories, the stock prices react according to the information and in 
case of weak form of market efficiency, the past price information is fully incorporated in the current 
price. This implies that it is near to impossible that investor gets abnormal profit over a long period of 
time using the trading rules based on historical price information. The Markov chain assumes that 
prices keep changing within specified but unobserved price range (the present study calls it price 
regime or state) which forms psychological price barriers and in order to break the barriers the market 
needs information. The present study assumes that potential information pushes the prices from one 
regime to another regime. Technically, the prices follow a pattern and there could be several ways of 
analyzing the price pattern and use it for future predictions. The previous studies have applied time 
series methodologies including Exponentially Weighted Moving Average (EWMA), Auto Regressive 
Integrated Moving Average (ARIMA), Generalized Auto Regressive Conditional Hetroscedastic 
(GARCH ) and technical chart analysis techniques but only a handful of researchers have used regime 
switching methodology for analysis. The first step is to identify the regimes, second is to analyze and 
record the frequency of transition of one state into another, third is to calculate the transitional 
probabilities and finally use the probabilities for further price forecasting. The detail of this process is 
discussed in the methodology section.
 

 As stated earlier, few researchers have used the regime switching Markov chain 
methodology in analyzing the stock prices, the distinction of the idea presented here is the 
introduction of several finite state spaces instead of conventional method of 3 major state spaces. PSE 
is among the highly volatile market of the region which is more volatile during low negative return 
regimes and less volatile during positive return periods. This is evident in figure 1 which compares the 
3 days moving average returns of PSE with 3 days volatility. The figure depicts that during the high 
negative return periods the volatility graph is at its peak while returns are more stable during the 
period of positive returns. As conventional approaches like EWMA, ARIMA and GARCH are not 
much effective as the parameters of these models are constants and introducing Ito’s process 4  in 
theses model are extremely complex. Therefore, the present study suggests the use of regime 
switching models to be more appropriate in case of PSE. 
 

Literature Review

 The existing literature provides a good deal of debate on the idea of regime shifts and 
Markov switching models. Since the time of Goldfeld and Quandt (1973) who appears to be the 
pioneers in addressing the existence of regimes and introduced the regime switching regression for 
estimation. Goldfeld and Quandt (1973 b) latter addressed the issues in structural shifts by switching 
regression. Hamilton (1989) improved the model of Goldfeld and Quandt (1973) by allowing regime 
shifts in dependent variable and introduced Markov Switching Autoregressive (MSAR) model. 

4 Ito process is based on Itô calculus, named after Kiyoshi Itô, which extends the methods of calculus to stochastic processes 
such as Brownian motion (see Wiener process). It has important applications in mathematical finance and stochastic differential 
equations. The details of this complex idea is beyond the scope of this paper.

 The application of regime switching models in case of stock market returns was first 
introduced by Turner et al. (1989) who capture the regime shift behavior in mean and variance of 
stock market returns using MSAR. Latter, several researchers (for instance, Chu et al., 1996; Schaller 
& Norden, 1997 & Nishiyama, 1998 etc) studied and highlighted the regime switching property of 
stock returns. Both Cheu et al. (1994) and Schaller and Norden (1997) found regime shifts in stock 
returns. They investigated the relationship between stock returns and their volatility using MSAR and 
found a nonlinear relationship in returns and volatility. Nishiyima (1998) investigated the existence of 
different regimes in aggregate stock returns and their mean variance properties in five industrialized 
countries. He focused more on volatility shifts rather than mean shifts whiles identifying the switching 
behavior and found consistent volatility based regime shifts in all countries. Similarly Maheu and 
McCudy (2000) used regime switching model in US stock market. Wang and Theobald (2007) applied 
MS regression in East Asian countries and found that stock returns in these countries are characterized 
by two and three regimes. Ismail and Zaidi (2008) examined the regime switching model in more 
detail in Malaysia. They used non-linear MSAR framework to capture regime shift behavior in Bursa 
Malaysia. Laha (2006) investigated regime switching behavior in India by using hidden Markov 
model under Bayesian framework. Kumar (2006) analyzed the weekly data using Markov switching 
vector error correction model (MS-VECM) and found the existence of two different regimes 
identified on the basis of stock prices and trading volume. Researchers have also attempted to model 
a nonlinear structure in time series data. For instance, Turner et al. (1989), Schaller and Norden 
(1997), Hamilto and Lin (1996) and Gordon and St-Amour (2000) modeled the nonlinear dynamics 
of stock market volatility. The evidence from developing economies regarding the application of 
Markov chains is still very limited. Although MC is an emerging technique of modeling stock returns 
however, to the best of authors’ knowledge previous researchers have ignored this method of 
modeling stock returns especially in emerging markets. 

Methodology

 By Markov process the present study means a stochastic process {X (t); t ε T} having 
Markov property for a finite set of points (t_0,t_1,…..,t_9). Let Χ be the finite state space Markov 
chain with states(1,2,….10). Given a particular time event t the chain Χ is in state i and pij 5 denotes 
the conditional probability that Χ will be in state j at time t+1 given it was observed in state i at time 
t. In a similar way p_ij^((n)) represents the probability that Χ would transit from state i to state j after 
n transitions, given p_ij^((n))>0. Further, if A is a transition probability matrix of Markov Chain with 
finite state space then the elements of p_ij^((n)) have ergodic properties. The ergodic properties 6 of 
Markov chain include irreducibility, aperiodicity and time homogeneity. In short Markov chain is a 

5 It implicitly assumed here that Markov chain in time homogeneous as the quantity p_ijis independent of time t.
6 If (x0, x1…..xn) is an irreducible, time homogeneous, discrete space Markov chain, with stationary distribution π, then 1/n 
∑_(i=1)^n〖f(x_i )  ⇒ E[f(x)] 〗 for any bounded function f in ∈R.

process where for every n and t1<t2<t3…..tn, we have:

P(x(tn )≤xn |x(t)  t≤t_n-1)=P(x(tn )≤xn |x(t_n-1))

 The Markov property implies that the probability distribution of future prices does not follow 
any particular path which is followed by the price in the past therefore; investor cannot predict the 
future prices just by observing the past prices. To construct the Markov chain the present study taken 
the daily KSE100 index of PSE from 2010 to 2015. The log returns are then classified into 10 states 
based on the range of returns with the difference of 10%. The daily movement of returns for five years 
is closely observed to identify by the pattern of movement of index from one state of return to another. 
Before calculating the transition probability matrix, several tests are conducted to ensure the presence 
of Markov property. Initially, to test the dependence of a state on another, chi square test of 
independence is conducted. To check the stationarity of states, unit root test is also conducted and 
finally to verify the Markov property, AR(1) and AR(2) models are estimated 7 . Based on the 
transition of one state in to another a frequencies are calculated which are latter used to calculate 
transition probabilities. The transition state frequency is converted into transition probabilities as 
below:

 If A is the transition probability matrix of an irreducible, aperiodic finite state Markov chain 
then

 
 The Markov chain with above property is said to be ergodic and possesses a limiting 
distribution π (Baht,  1972). Based on the above mentioned methodology the statistical analysis is 
conducted and results are presented in the next section. In second phase, Monte Carlo (MC) 
simulation method is used to simulate random future data. MC model is given as below:

 Where It is the index at time t, It-1 is the previous value of index and r is the rate of return. 
Where r consists of drift factors defined by (μ-σ^2/2) at time t and a random variance σW_t. Hence,

7 In order to have a Markov property, only AR(1) should be significant and  not AR(2)

The above MC equation is used to generate ten series each from Markov chain and actual stock index 
and the results therefrom are discussed in the next section.
Statistical Analysis

 Initially ten states are designed using a constant range of 0.1% starting from 3% to -4% based 
on the daily index returns. Table 1 presents the descriptive analysis of ten states. The last three 
columns show the mean return of each state and volatility measured by standard deviation and 
coefficient of variation. The descriptive analysis of states shows that 4th and 6th states are highly 
volatile however it is not clear that which initial state is most probable to be transited in to state 4 or 
6. Before analyzing the chain sequence in the mentioned below states it is important to estimates that 
whether or not the chain possesses the Markov property.
 
Table 1.
Descriptive Analysis of States
 

 At first step the chi-square (χ^2) test of independence of states given the current state is 
conducted, the estimated value of the test is significant at the level less than 1%                                                                                             
which shows that the identified states are dependent on its first lag, which is a necessary condition for 
a Markov chain. However, in order to fulfill the Markov chain requirement the identified states must 
be correlated with its first lag which means that in order to predict the next state of returns the only 
information required is the knowledge of the current state of return.

Table 2:
Test of Stationarity and Auto Regression

 Dependent variable is current state and LAG1 represents the state at time t-1 and LGA2 
represents the state at time t-2. To check the stationarity of states Unit root test is conducted which 
remain significant at level. Unit root t-stat is -31.97871 and p-value is 0.000. Parentheses contain 
(standard Error) and [t-statistic]. **** shows the level of significance at the level 1% or less. 

 This assumption is tested using two methods. Firstly the test of autocorrelation using first, 
second and third lag is applied and secondly the test of auto regression using the 1st, 2nd and 3rd order 
is applied. The former shows a significant autocorrelation between the current and first lagged value 
(i.e.AC1= 0.12; sig 0.000) and very weak correlation with the second and third lagged value (i.e. 
AC2=0.01; sig 0.000 and AC3=0.01; sig 0.000) while the latter confirmed that only AR (1) is 
significant. The results of auto regression are presented in table 2. The results of table 2 confirms the 
presence of Markov property in the states identified in this study as only the value of first lag is 
significant. The next step is to construct a state transition matrix. Following is the transition 
probability matrix ‘A’ which is measured on the basis of frequency of transition of one state into 
another. Each component of A is p_ij, where p is the probability of transition of state i into state j, with 
i,j=1,2,3…..10. 

 For example, M is the initial state space which shows the return on index is in state 1 with  p 
= 1.00 at a particular point in time, and then it will shift from state 1 to state 3 with P=1.00 after first 
transition (given as M*A, where A is transition matrix given above). After 6th transition the 
probability of states are presented in (5) below. Following is the output of transition vectors using 
MatLab.

 Similarly, if the initial state is S10 with P=1.00 then after 5th transition, the probability 
distribution of state are given in (6) below:

 The probability distribution of states given above is equal to the stationary transition vector 
T. If probability of return stays in 1st state is 1.00 at time t then there is 38.41% chance that return 
would be in state 4 and 34.31% chance that return would be in state 6 and so on so forth. Finally, based 
on the transitional probability matrix expected return of state j is calculated given state i and using 
these return forecasts future value of KSE index are calculated. Figure 3 shows the comparison of 
actual index and forecasted index. It is evident from figure 3 that based on Markov chain model some 
sort of intuition can be taken regarding the stock indices. 

Figure 3: PSE Index (Actual vs Predicted)

 Further based on Monte Carlo approach random simulations are run for each of the series i.e. 
predicted Markov chain and actual KSE index, the results are depicted in the figure 4 and 5 
respectively. The smoothness of Markov chain simulation is due to the fact that additional variance 
has been absorbed in single state and index prediction can be made with lesser volatility.

Conclusion and Direction for Future Research

 The present study attempts to investigate the presence of Markov property in PSE using the 
data of KSE 100 index. Based on the daily index returns ten return states are identified. To identify the 
Markov property test of dependence of current state on the first lagged state is estimated using AR (1) 
and AR (2) models. The stock transition from one state to another state is calculated and based on the 
relative frequency of transitions a state transition matrix is identified. This transition matrix is further 
employed to calculate the next expected return given a particular state at present. The returns are 
converted in to predicted index which showed that a Markov chain is suitable for modeling stock 
indices. The methodology used in this paper is preliminary in nature because the authors did not find 
any evidence of the use of Markov chain in developing economies especially in Pakistan. Therefore, 
the authors find it justified to start modeling the index using discrete time finite state MC. Due to its 
power of capturing behavioral factors in price modeling, Markov chains are emerging as an alternate 
way of analyzing the time series data. In future, researchers can analyze and model a portfolio of 
individual stocks instead of stock index. There is still need to improve the method of identification of 
states in Markov chains. Instead of discrete time finite state models more complex continuous time 
models can be studies. Last but not least, future researchers can use Markov Chain Monte Carlo 
(MCMC) method under Bayesian framework, in stock price modeling and forecasting.

 Based on the transition probability matrix following is the diagrammatic depiction of regime 
switching Markov chain (Figure 2). The arrows at the top show the probability of transition from high 
return state towards lower return state while arrows at lower side shows the probability of transition 
from low return state towards the high return state. The self-directed arrows at the lower side show the 
probability that the current state shall persist.

Figure 2:  Finite State Space Markov Chain

The transition matrix A fulfills the property of irreducibility and aperiodicity and also it is time 
homogenous.

Where,  = A^n  with n>0 , is a steady state probability vector. 
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